Вконтакте Facebook Twitter Лента RSS

Активированый уголь - адсорбент. Исследовательская работа Тюлегенова Ануарбека.doc - Исследовательская работа «Как «работает» активированный уголь?» Направление: познание мира

С физико-химическим явлением, о котором сейчас пойдет речь, знаком, наверное, каждый, хотя, может быть, не все знают, что оно называется адсорбцией. Если даже вы и не проходили адсорбцию на уроках, наблюдали вы ее неоднократно. Как только вы сажаете чернильную кляксу на бумагу или, что гораздо хуже, на одежду, так сразу и знакомитесь с этим явлением. Когда поверхность одного вещества (бумаги, ткани и т. д.) поглощает частицы другого вещества (чернил и проч.), это и есть адсорбция.

Очень хороший адсорбент - уголь. Причем не каменный, а древесный, и не просто древесный, а активный (активированный). Такой уголь продают в аптеках, обычно в виде таблеток. С него и начнем опыты по адсорбции.

Приготовьте бледный раствор чернил любого цвета и налейте в пробирку, но не доверху. Положите в пробирку таблетку активного угля, лучше растолченного, закройте пальцем и встряхните как следует. Раствор посветлеет на глазах. Поменяйте раствор на какой-либо другой, но тоже окрашенный - пусть это будет разбавленная гуашь или акварель. Эффект окажется таким же. А если взять просто кусочки древесного угля, то они будут поглощать краситель значительно слабее.

В этом нет ничего странного: активный уголь отличается от обычного тем, что у него гораздо большая поверхность. Его частицы буквально пронизаны порами (для этого уголь особым способом обрабатывают и удаляют из него примеси). А коль скоро адсорбция - это поглощение поверхностью, то ясно: чем больше поверхность, тем и поглощение лучше. Адсорбенты способны поглощать вещества не только из растворов. Возьмите поллитровую стеклянную банку и капните на дно одну каплю одеколона или любого другого пахучего вещества. Обхватите банку ладонями и подержите её так с полминуты, чтобы немного нагреть пахучую жидкость - тогда она будет быстрее испаряться и сильнее пахнуть. Как принято в химии, не нюхайте вещество прямо из склянки, а легкими взмахами руки направьте к носу воздух вместе с парами вещества; не всегда ведь известно, хорошо ли пахнет то вещество, которое в склянке.

Каким бы ни был запах, вы его, конечно, почувствуете явственно. А теперь положите в склянку немного активного угля, закройте ее плотно крышкой и оставьте на несколько минут. Снимите крышку и вновь направьте воздух к себе взмахами ладони. Запах исчез. Он поглотился адсорбентом, или, точнее, поглотились молекулы летучего вещества, которое вы поместили в банку.

Не обязательно брать для этих опытов активный уголь. Есть много других веществ, которые могут служить адсорбентами: туф, сухая размолотая глина, мел, промокательная бумага. Словом, самые разные вещества, но обязательно с развитой поверхностью. В том числе и некоторые пищевые продукты - вы, наверное, знаете, как легко хлеб впитывает посторонние запахи. Недаром пшеничный хлеб не советуют держать в одной упаковке с ржаным - их запахи смешиваются, и каждый теряет свой особый, только ему присущий аромат.

Очень хороший адсорбент - воздушная кукуруза, или кукурузные палочки, столь любимые многими из нас. Конечно, тратить на опыт пакет или даже четверть пакета нет смысла, но несколько штук... Попробуем. Предыдущий опыт с пахучими веществами повторите в присутствии кукурузных палочек - и запах совершенно исчезнет. Конечно, после опыта есть палочки уже нельзя.

Вернемся к опыту с получением диоксида углерода (углекислого газа) . Заполните этим газом две пробирки, причем в одну положите кукурузные палочки и встряхните несколько раз. Далее, как и прежде, проделайте опыт с известковой водой (можно просто «наливать» в нее газ из пробирок - он тяжелее воздуха). Будет ли разница в поведении известковой воды? Да, будет. Жидкость станет мутной только в том стакане, в который «вылили» газ, не обработанный адсорбентом. А из другой пробирки, той, где были кукурузные палочки, диоксида углерода не извлечь: его поглотил адсорбент.

Если вы работаете в химическом кружке и уже научились получать и собирать такие окрашенные газы, как хлор и оксид азота (дома с ними дела иметь нельзя, тут требуется хорошая тяга), то можете испытать на них действие угля и кукурузных палочек. В сосуд с окрашенным газом поместите адсорбент, встряхните несколько раз - и окраска, если не исчезнет совсем, то заметно ослабеет.

Сейчас на многих кухнях над газовыми плитами ставят разнообразные устройства для очистки воздуха от чада и дыма. В таких устройствах, помимо прочего, есть патрон с каким-либо адсорбентом, через который прогоняют загрязненный воздух. Что при этом происходит, вы теперь знаете. А когда вся поверхность будет занята посторонними, «впитанными» из воздуха частицами, патрон заменяют свежим.

О. Ольгин. "Опыты без взрывов"
М., "Химия", 1986

Реактивы и оборудование:

  • медь;
  • концентрированная азотная кислота;
  • активированный уголь;
  • конические колбы (3);
  • пробки (2);
  • пробка с газоотводной трубкой.

Пошаговая инструкция

Приготовим три колбы: две с пробками и одну - с газоотводной трубкой. В колбу с газоотводной трубкой добавим и нальем концентрированную азотную кислоту. Интенсивно выделяется бурый газ – диоксид азота. «Разольем» его по двум колбам и закроем пробками. Через некоторое время, убедившись, что системы герметичны, в одну из колб добавляем таблетки .

Пояснение процесса

Спустя несколько минут в колбе с таблетками будет постепенно исчезать: его адсорбирует активированный уголь. Адсорбция - это процесс поглощения газов, паров, веществ из раствора или газовой смеси адсорбентом (поверхностным слоем жидкости или твердого тела). Хорошим «поглотителем» является активированный уголь. В зависимости от технологии изготовления поверхность одного грамма угля может иметь площадь около 1500 м². Активированный уголь широко используется в медицине и промышленности для очистки, разделения и извлечения различных веществ.

Меры предосторожности

В опыте используются ядовитые вещества. Не повторяйте эксперимент дома.

Внимание! В эксперименте использованы токсичные и опасные для здоровья вещества. Не пытайтесь повторить этот опыт самостоятельно.

Надпись на упаковке: «Ваш уголь не активирован. Для активации отправьте SMS-сообщение на номер 111» (Анекдот)

Наверное, сложно встретить человека, который бы не слышал об активированном угле. Всем известны его медицинские свойства, его используют в фильтровальных элементах, дамы пытаются с его помощью похудеть, а некоторые джентльмены используют его при изготовлении… э-э-э… скажем так, самодельных спиртных напитков. Но не все знают, что же он собой представляет и почему же его называют активированным. Разобраться в вопросе нам поможет небольшой эксперимент, который очень просто реализовать в домашних условиях.

Для опыта нам понадобятся:

  • Собственно, активированный уголь в таблетках, которым без труда можно разжиться в любой аптеке;
  • Йод, который на аптечной полке стоит где-то неподалеку от активированного угля;
  • Две прозрачные емкости – стаканы, колбы, баночки – то, что имеется у вас под рукой;
  • Немного воды.

Для начала растолчем штук десять таблеток активированного угля. Растолочь их будет проще, если добавить несколько капелек воды.

После этого добавляем примерно чайную ложку йода.

А затем пару столовых ложек воды.

Хорошенько все это дело размешаем.

В таблетки с углем добавляют крахмал, поэтому наша взвесь наряду с черным приобретает синий оттенок – это характерная реакция йода на присутствие крахмала.

Теперь оставляем наш раствор на некоторое время. Для того чтобы, как говорится, почувствовать разницу, во второй стакан также нальем йод и немного воды, но активированного угля добавлять не будем.

По прошествии пары часов видим, что контрольный стакан по-прежнему содержит бурый раствор йода. А вода в стакане с активированным углем очистилась и стала прозрачной. Ну, или почти прозрачной — у меня еще не весь уголь осел на дно, поэтому вода выглядит немного мутноватой. Но это вопрос времени — если бы я подождал еще, то вода стала бы совсем чистая.

Так активированный уголь любезно продемонстрировал нам свои адсорбционные, т.е. поглощающие свойства. Ровно таким же образом активированный уголь действует при отравлениях или в фильтрующих элементах.

Почему же эта небольшая черненькая таблеточка способна так эффективно поглощать различные вещества? И почему аналогичными свойствами не обладает сердечник от простого карандаша или, скажем даже, алмаз – ведь они все состоят из углерода.

Весь фокус кроется в особом производстве активированного угля. Производство активированного угля состоит из двух этапов. Первый этап – это получение древесного угля. Он образуется при нагревании древесины без доступа кислорода. Однако полученный таким образом древесный уголь не способен выполнять функцию адсорбента – поры и микроканальцы в нем есть, но их довольно мало и они закрыты. Тогда древесный уголь подвергают активации – это второй этап, в процессе которого уголь либо нагревают, предварительно пропитав его специальными химическими соединениями, либо обрабатывают перегретым водяным паром. В обоих случаях процесс протекает без доступа кислорода, чтобы уголь не загорелся.

В результате этих операций получается особая углеродная структура, которая представляет собой слои атомов углерода, расположенных хаотично относительно друг друга, из-за чего между слоями образуется пространство – поры. Эти поры как раз и придают активированному углю его свойства – поры способны поглощать и удерживать в себе другие вещества. И пор этих невероятное количество. Так, площадь пор всего 1 грамма активированного угля может доходить до 2000 м 2 !

Удачных вам экспериментов!

  • Белоусов К.С.
  • Минькова А.А.
  • Генералова К.Н.
  • Олонцев В.Ф.

Ключевые слова

АКТИВИРОВАННЫЙ УГОЛЬ / ACTIVE CARBON / МЕЛАССА / MOLASSES / ОСВЕТЛЯЮЩАЯ СПОСОБНОСТЬ / АДСОРБЦИЯ / ADSORPTION / ПОРИСТОСТЬ / POROSITY / DEPOLARIZATION CAPABILITY

Аннотация научной статьи по экономике и экономическим наукам, автор научной работы - Белоусов К.С., Минькова А.А., Генералова К.Н., Олонцев В.Ф.

Одним из выдающихся достижений науки в XIII веке стало открытие российским академиком Т.Е. Ловицем явления адсорбции активированным углем. Практическое применение этого рода адсорбента предоставляет ценные результаты, необходимые для дальнейшего развития промышленности. В настоящее время нет ни одной отрасли, где не нашли бы применения активированные угли. Их уникальность основывается на пористой структуре, от которой напрямую зависят адсорбционные характеристики, и, соответственно, качество активированного угля. Использование активированных углей обеспечивает возможность создания принципиально новых, экологически чистых технологических процессов и разнообразных изделий сорбционной техники. Активность угля может быть определена путем испытания его адсорбционной способности по отношению к различным растворам, органическим красителям. Активность является как свойством поверхности, так и свойством пространственного строения углерода. Адсорбционная активность углеродных сорбентов, в данном случае углей, может быть определена по органическим жидкостям специальным маркерам. Рассмотрены две методики определения осветляющей способности активированных углей по мелассе : французская (фирма «СЕСА») и российская. Приведен полный алгоритм эксперимента, включающий основные формулы, расчет экспериментальных навесок и базовые требования к мелассам для обеих методик. На основании литературных данных проведен сравнительный анализ меласс , установлено их сходство. Проведены исследования для эталонных углей России и Франции: ОУ-А, СР, СХV. На основании экспериментальных данных и содержания методик проводится их сравнительный анализ, вследствие чего делается вывод о более точном применении французской методики.

Похожие темы научных работ по экономике и экономическим наукам, автор научной работы - Белоусов К.С., Минькова А.А., Генералова К.Н., Олонцев В.Ф.,

  • Влияние хлорида натрия на ферментативную активность дрожжей debaryomyces hansenii Н4651

    2017 / Яковлева А.К., Канарская З.А., Канарский А.В.
  • Исследование процесса адсорбционной доочистки биологически очищенных сточных вод химического предприятия

    2009 / Ушаков Геннадий Викторович, Журавлев Владимир Александрович, Ушаков Андрей Геннадьевич
  • Методика оценки качества углеродных адсорбентов

    2009 / Мокрова Наталия Владиславовна
  • Оценка адсорбции витаминов и микроэлементов клеточной стенкой дрожжей Saccharomyces cerevisiae

    2007 / Ахмадышин Р. А., Канарский А. В., Канарская З. А.
  • Адсорбция пиридина и фенола из органо-минеральной смеси модифицированными кислотой активными углями

    2011 / Беляева Оксана Владимировна, Голубева Надежда Сергеевна, Краснова Тамара Андреевна

One of the most outstanding achievements of science in the XIII century is the discovery of the carbon adsorption by Russian academician T. Lovitz. Practical application of this kind of adsorbent provides valuable results necessary for the further development of the industry. At the moment there is no industry where would not have found the use of activated charcoal. Its uniqueness is based on the pore structure, which depends on the adsorption characteristics and, accordingly, the quality of activated charcoal. The usage of activated carbon provides an opportunity to create a fundamentally new, environmentally friendly processes and products of various sorption techniques. Active charcoal can be determined by testing its adsorptive capacity with respect to different solutions, organic dyes. Activity is a property of the surface and the property of the spatial structure of carbon. Adsorption activity of carbon sorbents, in this case coal, can be determined by organic liquids special markers. This article describes two methods of decolorize capability on molasses index of active carbon by the French (firm «CECA») and Russian procedure is considered. The full scheme of experiment is given; it consists of basic analytic expressions, the calculation of experimental weights of active carbon and the base claims for molasses for both procedures. Based on the literature data, the comparative test for molasses is made, the analogy is found out. The experiments for the etalon carbons from Russia and French are made: OU-A, CP, CXV. On the authority of experimental data and content of both procedures, their comparative analysis is given; in consequence of this the conclusion about accuracy of French procedure is made.

Текст научной работы на тему «Методы испытания осветляющей способности активированных углей по мелассе»

_ВЕСТНИК ПНИПУ_

2014 Химическая технология и биотехнология № 4

УДК 661.183.2

К.С. Белоусов, А. А. Минькова, К.Н. Генералова, В.Ф. Олонцев

Пермский национальный исследовательский политехнический университет, Пермь, Россия

МЕТОДЫ ИСПЫТАНИЯ ОСВЕТЛЯЮЩЕЙ СПОСОБНОСТИ АКТИВИРОВАННЫХ УГЛЕЙ ПО МЕЛАССЕ

Одним из выдающихся достижений науки в XIII веке стало открытие российским академиком Т.Е. Ловицем явления адсорбции активированным углем. Практическое применение этого рода адсорбента предоставляет ценные результаты, необходимые для дальнейшего развития промышленности. В настоящее время нет ни одной отрасли, где не нашли бы применения активированные угли. Их уникальность основывается на пористой структуре, от которой напрямую зависят адсорбционные характеристики, и, соответственно, качество активированного угля. Использование активированных углей обеспечивает возможность создания принципиально новых, экологически чистых технологических процессов и разнообразных изделий сорбционной техники.

Активность угля может быть определена путем испытания его адсорбционной способности по отношению к различным растворам, органическим красителям. Активность является как свойством поверхности, так и свойством пространственного строения углерода. Адсорбционная активность углеродных сорбентов, в данном случае углей, может быть определена по органическим жидкостям - специальным маркерам.

Рассмотрены две методики определения осветляющей способности активированных углей по мелассе: французская (фирма «СЕСА») и российская. Приведен полный алгоритм эксперимента, включающий основные формулы, расчет экспериментальных навесок и базовые требования к мелассам для обеих методик. На основании литературных данных проведен сравнительный анализ меласс, установлено их сходство. Проведены исследования для эталонных углей России и Франции: ОУ-А, СР, СХУ. На основании экспериментальных данных и содержания методик проводится их

сравнительный анализ, вследствие чего делается вывод о более точном применении французской методики.

Ключевые слова: активированный уголь, меласса, осветляющая способность, адсорбция, пористость.

K.S. Belousov, A.A. Minkova, K.N. Generalova, V.F. Olontsev

Perm National Research Polytechnic University, Perm, Russian Federation

METHODS OF TESTING OF DECOLORIZATION ABILITY OF ACTIVE CARBONS

One of the most outstanding achievements of science in the XIII century is the discovery of the carbon adsorption by Russian academician T. Lovitz. Practical application of this kind of adsorbent provides valuable results necessary for the further development of the industry. At the moment there is no industry where would not have found the use of activated charcoal. Its uniqueness is based on the pore structure, which depends on the adsorption characteristics and, accordingly, the quality of activated charcoal. The usage of activated carbon provides an opportunity to create a fundamentally new, environmentally friendly processes and products of various sorption techniques.

Active charcoal can be determined by testing its adsorptive capacity with respect to different solutions, organic dyes. Activity is a property of the surface and the property of the spatial structure of carbon. Adsorption activity of carbon sorbents, in this case coal, can be determined by organic liquids - special markers.

This article describes two methods of decolorize capability on molasses index of active carbon by the French (firm «CECA») and Russian procedure is considered. The full scheme of experiment is given; it consists of basic analytic expressions, the calculation of experimental weights of active carbon and the base claims for molasses for both procedures. Based on the literature data, the comparative test for molasses is made, the analogy is found out. The experiments for the etalon carbons from Russia and French are made: OU-A, CP, CXV. On the authority of experimental data and content of both procedures, their comparative analysis is given; in consequence of this the conclusion about accuracy of French procedure is made.

Keywords: active carbon, molasses, depolarization capability, adsorption, porosity.

Угли относятся к группе промышленных адсорбентов. В качестве сырья для получения активированных углей применяются углерод-содержащие материалы различной природы: ископаемые торф и уголь, полимеры и смолы, растительное сырье (древесина, кора, скорлупа и т.д.) . Промышленные адсорбенты имеют высокоразвитую поверхность. Активированные угли как промышленные адсорбенты имеют ряд особенностей, определяемых характером их поверхности и пористой структуры. К таким особенностям относятся адсорбционные свойства . Адсорбция - поглощение газов, паров или жидкостей на поверхности раздела вещество - адсорбент .

Физическая адсорбция органических веществ из водных растворов наиболее сильно проявляется при использовании в качестве адсорбентов углеродных материалов, поскольку энергия вандерваальсового взаимодействия молекул воды с атомами углерода, образующими поверхность углеродных тел, намного меньше энергии дисперсионного взаимодействия этих атомов с атомами углеродного скелета органических молекул . В настоящее время увеличивается потребность в углеродных сорбентах для очистки питьевой, хозяйственно-бытовой и сточных вод, промышленных выбросов .

В аналитической химии методы научного исследования углей применяют для изучения состава, строения и свойств углей. В истории известно, что некоторые из подобных методов со временем становились стандартами для испытаний .

Одним из известных и надежных методов определения адсорбционной активности является использование раствора мелассы. Меласса - темно-коричневая органическая жидкость. Ее осветление является важным аналитическим методом в производстве углей . Она относится к органическим жидкостям, размер молекул которой около 3 нм (рис. 1). Некоторые виды активированных углей, имеющие развитую систему макро- (более 50 нм) и мезопор (от 2 до 50 нм), обладают способностью к адсорбированию больших молекул, подобных молекулам мелассы. Число мелассы, или ее эффективность - мера мезопор содержания активированного угля (больше, чем 20 А, или больше, чем 2 нм). Ее высокое число указывает на высокую адсорбцию больших молекул. Об эффективности мелассы говорит как процент, так и число мелассы. Существуют различные методики использования ее в качестве адсорбтива, но все они, по сути, схожи . Общие черты этих методик заключаются в следующем:

Мелассовое число активированного угля (ЕВРО) по европейской методике определяется как количество активированного угля в милиграммах, обладающее таким же обесцвечивающим эффектом, как и 350 мг (по сухому весу) стандартного порошкового угля А8100 при обесцвечивании стандартного раствора мелассы по стандартной методике. Чем меньше мелассовое число (ЕВРО), тем лучше уголь удаляет высокомолекулярные органические вещества из мелассы ;

Мелассовое число активированного угля по методике США выражает обесцвечивающую способность угля в относительных единицах к стандартному углю В-45. Исходя из этого чем больше мелассовое число (США), тем лучше уголь удаляет органические вещества из мелассы ;

Эффективность обесцвечивания мелассы выражается в процентах и показывает способность угля убирать 90 % цвета стандартного раствора мелассы. При этом способность стандартного порошкового угля В-45 (в граммах на единицу цветности) принята за 100 % .

Минимальный диаметр пор 3 нм (30 А) 1,5 нм (15 А) 0,5 нм (5 А)

Рис. 1. Сравнение размеров пор молекул для мелассы, метиленового

голубого и йода

Мелассовое число и эффективность адсорбции по мелласе являются наиболее эффективными стандартными методами, показывающими способность углей к удалению загрязнений из аминов и других растворов. Меласса содержит вещества, которые по своим размерам схожи с размерами загрязнений, вызывающих вспенивание абсорбционных растворов. Меласса - отход сахарного производства, сиропообразная жидкость темно-бурого цвета со специфическим запахом. Содержит 20-25 % воды, 50-60 % глюкозы, фруктозы, сахарозы, около 10 % растворенных высокомолекулярных природных красителей, азо-

тистых соединений (преимущественно амидов), свободных и связанных кислот, около 8 % золы .

На рассмотрение предоставляются две методики: французская, разработанная фирмой «СЕСА», и российский стандарт ГОСТ4453-74.

Мелласное число (фирма «СЕСА»)

Основная часть

Масса m активного угля измеряется в суспензии раствора мелассы. С учетом появившегося обесцвечивания раствора выявляется деко-лоризационная способность.

Масса Р - масса эталона угля, определение которой проводят при тех же технических условиях для получения той же обесцвеченности.

IMS - константа, характеризующая деколоризационную способность вышеназванного угля. Тогда мелассное число активного угля определяется как

Численное значение IMS обычно устанавливается и предоставляется в соответствии с мелассным числом сухого активного угля, использованного выше.

Общая схема метода

Построение изотермы деколоризации

Деколоризация D раствора мелассы может быть определена в соответствии с уравнением

D =ÇD)Mûf.1()o, (1)

где (D0f и (D0)b - оптическая плотность раствора мелассы после деколоризации и «холостого опыта» соответственно («холостой опыт» -это раствор, полученный без активного угля).

Связь между массой m используемого активного угля и получившейся деколоризацией D может быть записана в соответствии с изотермой сорбции Фрейндлиха:

K (100 - D)a, m

в которой К и а могут быть определены как константы для конкретного угля, определенной мелассы, конкретных технических условий и так далее, в соответствии с тем, что интервал деколоризации составляет от 60 до 90 %.

Количество рассматриваемого активированного угля, называемого стандартной пробой или эталоном, необходимое для данной деколоризации

Масса Р эталона, показывающего ту же деколоризацию, что и у испытуемого образца, записывается и определяется уравнением (1). Экспонента а является мнимой и содержится в каждой опытной серии по определению эталона; каждая серия содержит парные величины (р0, Д0), позволяющие исключить константу К. Уравнение записывается следующим образом:

Величина экспоненты а

Величину а определяют через линейную регрессию начиная с уравнения (1), записывая в логарифмической форме с использованием минимум 10 значений (ри Д), в установленном порядке распределяют по всей величине деколоризационного интервала - от 60 до 90 %.

Подобный анализ должен проделываться каждый раз, когда эталон или меласса заменяются. Это целесообразно и желательно, однако на практике необходимо заново осуществлять подобный анализ каждые три месяца для выявления возможного изменения в химическом составе мелассы.

Величина а всегда округляется до второго знака после запятой. Если изменение между новой величиной а и раннее использованной составляет величину, большую или равную ±0,02, необходимо сделать повторное подтверждение перед принятием нового значения а. Величина а, соответствующая текущим условиям:

Влажный эталон

Для использования постоянного материала эталон должен всегда находиться в пределах одних условий влаги. Для практической цели рассматривается и принимается во внимание 0 % влаги.

Таким образом, необходимо следующее:

Всякий раз высушивать используемый уголь перед использованием;

Или использовать его в том состоянии, в каком он находится, но сразу после его использования определять влагосодержание угля и включать этот недочет в общий подсчет.

Как правило, если И - это влагосодержание эталона, выраженное в процентах, то формула (2) принимает следующий вид:

Образцы активного угля

Поскольку необходимо удерживать значение деколоризации в требуемом интервале 60-90 %, следует разделять различные качества углей на 4 группы. Каждая группа характеризуется массой т¿, полученной путем серии измерений. Группы французских углей, используемых для осветления, следующие:

Группа 1: включает типы СХУ, СР; т1 = 125 мг;

Группа 2: включает угли 4Б, 3Б, 2Б и их эквивалентные заменители, в равной степени окисленные или обработанные кислотой: +СХА, СХ, 3 ББ 2, СЯ, БА 1703; т2 = 250 мг;

Группа 3: включает типы БМ, Б и их соответствующие окисленные или обработанные кислотой типы +20 и Б45; т3 = 500 мг;

Группа 4: О, ТК, 25 в; т4 = 1,000 мг (однако очень важно для этого типа, что взамен предложенного значения массы может быть использована цифра т = 1,500 мг).

В случае, если две большие разницы между активностью испытуемого угля не позволяют Б находится в интервале от 60 до 90 %, необходимо провести эксперимент, используя новую пробу и выбирая более подходящее значение величины тг-.

Как правило, для определения массы тг-, которая использовалась бы в соответствии с активностью выбранного активного угля, группа которого известна, предварительный эксперимент следует провести с использованием массы т2. Полученное таким образом значение деколоризации Б определяет активную группу и, следовательно, более подходящее значение тг-, которое приведет значение деколоризации между 60 и 90 %.

Деколоризация, % Группа

90 > 0 > 60 II

60 > 0 > 35 III

Метод контроля

Оборудование:

Пипетка на 100 мл с одной отметкой или автоматическая;

Стеклянная колба на 1 л;

Складчатый фильтр (фильтровальная бумага), тип 4В;

N 111 фильтры - с диаметром голубого слоя 150 мм;

Лабораторные сосуды;

Горелка или плитка;

Термостатическая баня;

Спектрофотометр;

Воронки;

Аналитические весы.

Реагенты:

Раствор мелассы;

Ортофосфорная кислота (Н3РО4) - раствор, 52 или 60 по шкале

Формальдегид (муравьиный альдегид) 30 %.

Подготовка раствора мелассы

Раствор мелассы объемом n0 из сахарного тростника взвешивается и вводится в круглую колбу объемом 1 л.

Добавляется 500 мл дистиллированной воды с последующим добавлением х мл чистого раствора Н3РО4 (аналитической степени чистоты); опытно выбирается с целью исключения ошибки с рН среды, равным 2,6 в конечном растворе мелассы. В основном от 2 до 3 мл достаточно на 60 кислоты по Боме:

x(H3PO4) = " = 1,71.

3 144,3 - 60 84,3

Для обеспечения надлежащего (правильного) раствора мелассы раствор нагревается и поддерживается в течение 5 мин при кипячении. Необходимо быстро охладить проточной водой до температуры окружающей среды. Добавить дистиллированной воды для достижения 1 л на 5 г раствора. Фильтровальный материал Clarcel DIC и дополнитель-

ный фильтрующий слой складываются над фильтром типа Дюрье 4В, раствор проходит через всю комплектацию дважды.

Для увеличения времени хранения раствора мелассы, который должен храниться в холодильнике, обычно добавляют 1 мл 30%-ного раствора муравьиного альдегида. Таким образом, раствор может храниться 2 или 3 дня максимум.

Оптическая плотность раствора мелассы, приготовленного таким образом, измеряется с помощью спектрофотометра при длине волны 450 нм, чтобы в результате получить обесцвечивание с массой эталона, равной Р0 = т2:

= (Б0)Ь0 - (Б0)/0 = 68 ± 20%. 0 (ЗД

Раствор мелассы готов к использованию.

Порядок работы

Обесцвечивание мелассы с использованием активного угля

В мензурку объемом 150 мл вводится т мг порошкообразного угля после того, как уголь взвесили с точностью до +0,1 мг, влажность его <10 %.

Масса образца т определяется с уровнем активности испытанного углерода в соответствии с пунктом «Образцы активного угля».

100 мл раствора мелассы, приготовленного, как описано в пункте «Подготовка раствора мелассы», измеряют (набирают) с помощью пипетки, добавляют к активированному углю, помешивая при помощи стеклянной мешалки. Мензурку помещают в термостатическую ванну при 92±2 °С. Необходимо достичь температуры 70 °С при перемешивании раствора время от времени. Химический стакан затем вынимают из ванны и раствор фильтруют через фильтр Дюрье с синей полосой 150 мм. Первые несколько миллилитров раствора необходимо повторно профильтровать (1-2 раза), чтобы получить совершенно чистый фильтрат.

Обесцвечивание в случае с эталоном и «холостым опытом»

В каждую серию опытов входят следующие два испытания:

Два измерения с эталоном, выполнением при одинаковых условиях, таких же как для исследуемого угля, начиная с массы Р = 250 мг сухого эталона (или с известным уровнем влажности И);

Один «холостой опыт»; другими словами, раствор мелассы, не содержащий активированный уголь, рассматривающийся в рамках тех же условий, что и другие растворы, для которых окончательный цветовой уровень будет использован как основной при расчете обесцвечивания.

Измерение оптических плотностей

Оптическую плотность (Д0)Ь «холостого опыта» и (Д0)/ углерода обесцвеченного раствора мелассы и аналогичный эксперимент с эталоном измеряют на спектрофотометре при длине волны 450 нм.

Подсчет мелассного числа

1. Расчет выполняется на основе измерения оптических плотностей. Обесцвечивание определяются с помощью уравнения (1).

Иными словами, Д(%) - для испытуемого активированного угля (масса т) и Д0(%) - для эталона (масса Р0 = т2). Д0 - это среднее из двух значений, соответствующих двум экспериментам с эталоном.

2. С помощью уравнения (2) определяется масса Р эталона, необходимая для получения обесцвечивания Д, влажность к эталона известна. В нынешних условиях значение показателя а = 0,26.

3. Мелассное число испытуемого активированного угля /М получают, исходя из соотношения, в котором 1Мз - индекс мелассы для сухого эталона.

В настоящее время используются стандартные значения /М^: М = 168.

Определение адсорбционной активности по мелассе (ГОСТ 4453-76)1

Общая часть

Раствор мелассы готовят следующим образом: около 50 г мелассы разбавляют 800 см3 дистиллированной воды и затем водой или мелассой доводят оптическую плотность раствора до 0,6-0,7 опт. ед. при замере в кювете с расстоянием между рабочими гранями 5 мм и до 1,21,4 опт. ед. при замере в кювете с расстоянием между рабочими гранями 10 мм, затем добавляют 1 г кизельгура или силикагеля, растертого в порошок с частицами размером не более 1 мм, и взбалтывают. Раствор фильтруют через складчатый бумажный фильтр.

1 ГОСТ 4453-76. Уголь активный осветляющий древесный порошкообразный.

С поправками и изменениями. Технические условия. Введ. 01.01.93. М.: Изд-во стан-

дартов, 1993. 23 с.

Оптическую плотность полученного раствора мелассы замеряют на фотоэлектроколориметре при синем светофильтре с длиной волны 40 нм. В качестве контрольного раствора применяют дистиллированную воду.

Оборудование:

Фотоэлектроколориметр типа ФЭК-М;

Колба мерная по ГОСТ 1770-74 вместимостью 250 см3;

Баня водяная;

Кизельгур или силикагель марки КСК по ГОСТ 3956-76;

Уголь осветляющий - образец;

Вода дистиллированная;

Бумага фильтровальная.

Проведение анализа

По 0,5 г анализируемого и образцового угля взвешивают, с погрешностью не более 0,01 г, помещают в плоскодонные колбы и добавляют по 100 см3 раствора мелассы. Содержимое колб нагревают на бане до 80 °С при непрерывном взбалтывании и выдерживают при этой температуре в течение 5 мин, не прекращая взбалтывать. После взбалтывания растворы сразу же фильтруют через бумажный фильтр, отбрасывая первые порции фильтрата. Растворы после фильтрации должны быть совершенно прозрачными.

Раствор охлаждают до температуры окружающей среды и определяют их оптическую плотность по отношению к дистиллированной воде при условиях, соответствующих определению оптической плотности исходного раствора мелассы.

Обработка результатов

Адсорбционную активность анализируемого угля по мелассе (Х1) в процентах вычисляют по формуле

где й - оптическая плотность исходного раствора мелассы; й1 - оптическая плотность раствора, обработанного образцовым углем; й2 - оптическая плотность раствора, обработанного анализируемым углем.

За результат принимают среднее арифметическое двух параллельных определений, допускаемое расхождение между которыми не должно превышать 5 абс. %2.

2 ГОСТ 4453-76. Уголь активный осветляющий древесный порошкообразный.

С поправками и изменениями. Технические условия. Введ. 01.01.93. М.: Изд-во стандартов, 1993. 23 с.

Меласса является универсальным модельным веществом для оценки качества активных осветляющих порошкообразных углей, использующихся соответственно в тех отраслях, где проводится очистка (или осветление) высокомолекулярных технологических продуктов и полупродуктов. Различают 4 типа мелассы: рафинадная, тростниковая, сырцовая и свекловичная. Меласса фирмы «СЕСА» является тростниковой. Меласса, которую используют при анализе российских АУ по ГОСТ 4453-74, является свекловичной.

Естественно, что различное происхождение меласс объективно вызывает некоторые непринципиальные различия, которые выявляются при спектроскопическом исследовании в ИК-области. В целом ИК-спектры двух меласс идентичны (рис. 2), за исключением низкочастотной области (1300-650 см-1), известной как область «отпечатков пальцев», где каждое соединение в этом интервале имеет свою специфическую спектральную кривую. Ниже (табл. 1) приводятся данные по обеим мелассам при характерных частотах.

Таблица 1

Характеристики мелассы

№ п/п Французская меласса, см 1 Заводская меласса, см 1

1 1000 1000 (плечо)

2 930 (сил. инт.) 930 (плечо)

3 850-870 (шир.) 910 (шир.)

4 835 870 (уз.)

5 780 (плечо) 780

4000 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600 400 см"1

Рис. 2. ИК-спектры двух меласс : - отечественная свекольная меласса; - французская тростниковая меласса

Спектры двух меласс, снятые в УФ- и видимой областях (рис. 3), показывают, что абсорбционные кривые их схожи между собой. В ультрафиолете (<320 нм) красящие вещества меласс (по литературным данным) обладают селективным поглощением, различаясь лишь конфигурацией кривых. Это позволило применить спектроабсорбци-онный метод для количественного определения отдельных групп красящих веществ в мелассах и установить, что основная окраска их и, соответственно, состав обусловлены наличием следующих (табл. 2) групп красящих веществ в процентном отношении (приближенная оценка).

Таблица 2

Красящие вещества Французская меласса Заводская меласса

Продукты щелочного распада инвертных сахаров, % 70-75 70

Меланоидины, % 20-25 25-30

Карамели, % 5 0-5

200 210 220 230 240 250 260 2Ю 280 290 300 350 400 нм

Рис. 3. Спектры двух меласс в УФ - и видимой областях : - отечественная свекольная меласса; - французская тростниковая меласса

Полученные результаты хорошо согласуются с экспериментальными данными, полученными сотрудниками МТИПП, которые исследовали все типы меласс методом гельфильтрационного разделения.

В прикладном плане визуальное сравнение двух меласс позволило заметить следующее:

Некоторое запаздывание по скорости растворения в воде французской мелассы;

Исходная (сиропообразная) меласса фирмы «СЕСА» в несколько раз концентрированнее российской.

Применение меласс в качестве адсорбтива является классическим, общеизвестным способом, но объективная оценка всех известных нам методик, использующих природные мелассы, неизбежно приводит к выявлению одного главного существенного недостатка, присущего всем мелассам. Это то, что они в значительной степени подвержены изменениям качественного и количественного характера, что обусловливается, в свою очередь, различными природно-климатическими условиями происхождения сырья-основы. Иными словами, нестабильность состава адсорбтива-красителя (мелассы) является одинаково отрицательным моментом как для российской методики по ГОСТ 4453-74, так и для методики фирмы «СЕСА». Что касается первого метода, то вывод подтверждается многолетним опытом работы российских лабораторий, а второго - литературными данными аналогичных исследований.

Следует отметить также еще один, по нашему мнению, отрицательный момент в методике по ГОСТ 4453-74 и в методике фирмы «СЕСА». Это необходимость применения эталонного угля. Кроме трудностей подбора эталонного угля со строго определенными характеристиками, использование его как единого стандарта сравнения для контроля качества промышленных активных осветляющих углей, природа поверхности которых неодинакова (щелочные, кислые), считаем принципиально неверным.

В практическом плане освоение методики определения мелас-сного числа, используемой фирмой «СЕСА», позволило выявить следующее: французская методика находится на уровне качественно более высоком, чем российская, хотя суть методов, основной ход операций совпадают. Уровень французской методики определяется особой детальностью разработки, тщательным многоступенчатым подготовительным периодом перед непосредственным анализом, насыщенностью лабораторным оборудованием и приборами. Алгоритм выполнения расчетов по проведенным измерениям включает несколько ступеней, что, естественно, усложняет их. Показатель осветляющей способности в отличие от стандартной российской методики является безразмерной величиной (мелассное число), включающей в себя ряд относительных величин и констант.

В целом выполнение методики требует высокой квалификации лаборанта.

Полное воспроизведение методики фирмы «СЕСА» в наших условиях не представилось возможным, так как не все условия мы смогли соблюсти. Например:

Реактив Clarcel DIC по предполагаемой аналогии заменили известным нам кизельгуром;

Из лабораторного оборудования фирмы «СЕСА» мы не располагаем гофрированными фильтрами Дюрье (они были заменены складчатыми бумажными фильтрами) и не использовали вакуумные колбы с тиглями для фильтрования.

С учетом ряда приближений и допущений результаты проанализированных в процессе освоения методики фирмы «СЕСА» образцов выглядят следующим образом (табл. 3).

Таблица 3

Испытания активированных углей

Образец Мелассное число (фирма «СЕСА») Адсорбционная активность, % (ГОСТ 4453-74)

СР (Франция) 363 174

ŒV (Франция) 335 169

ОУ-А (РФ) 150 109

Эталон (РФ) 136 100

Исходя из представленной таблицы, полученные результаты можно интерпретировать следующим образом: благодаря особому построению алгоритма измерений и расчетов во французской методике она оказывается более мобильной, более чувствительной в оценке качества углей. Разницу в активности между образцами углей, например СР и CXV, российская методика почти нивелирует, тогда как анализ по методике фирмы «СЕСА» фиксирует различное их качество. Достижение такой наглядности в отображении качества углей - результат глубокой научной проработки анализа с включением необходимой лабораторной техники.

Итак, проведенное исследование свидетельствует о том, что методика фирмы «СЕСА» является более чувствительной, чем отечественная, и позволяет более тонко отличать активные угли по их качеству. Эти особенности французской методики следует учесть при усовершенствовании отечественной стандартной методики.

Список литературы

1. Бакланова О.Н. Микропористые углеродные сорбенты на основе растительного сырья / Росийский химический журнал. - 2004. -№ 3. - С. 89-94.

2. Кингле Х., Бадер Э. Активные угли и их промышленное применение. - Л.: Химия, 1984. - 216 с.

3. Когановский А.М., Левченко Т.М., Кириченко В. А. Адсорбция растворенных веществ. - Л.: Наукова думка, 1977. - 223 с.

4. Рощина Т. М. Адсорбционные явления и поверхность / Соро-совский образовательный журнал. - 1998. - № 2. - С. 89-94.

5. Шумяцкий Ю.И. Адсорбционные процессы: учеб. пособие. -М., 2005. - 164 с.

6. Кельцев Н.В. Основы адсорбционной техники. - М.: Химия, 1984. - 592 с.

7. Авгушевич И.В., Броновец Т.М. Стандартные методы испытания углей. Классификации углей. - М.: НТК «Трек», 2008. - 368 с.

8. Активированные угли Petrodarco - эффективные активированные угли для удаления высокомолекулярных соединений и частиц минеральных масел из абсорбционных растворов [Электронный ресурс] // Norit Digital Library. - 2011. - URL: http://tdtka.ru/wp-content/uploads/ 2012/10/3.2.-Aktivirovannyie-ugli-Petrodarco.pdf (дата обращения: 5.10.2014).

9. Силин М.П. Технология сахара. - М.: Книга по требованию, 1967. - 625 с.

1. Baklanova O.N. Mikroporistye uglerodnye adsorbenty na osnove rastitelnogo syrya . Rossiyskiy khimicheskiy zhurnal, 2004, no. 3, pp. 89-94.

2. Kingle Kh., Bader E. Aktivnye ugli i ikh promyshlennoe prime-nenie . Moscow: Khimiya, 1984. 216 p.

3. Koganovskiy A.M., Levchenko T.M., Kirichenko T.A. Adsorbtsiya rastvorennykh veschestv . Leningrad: Naukova Dumka, 1977. 223 p.

4. Roschina T.M. Adsorbtsionnye yavleniya i poverkhnost . Sorosovskiy obrazovatelnyy zhurnal, 1998, no. 2, pp. 89-94.

5. Shumyatskiy Yu.I. Adsorbtsionnye protsessy . Moscow, 2005. 164 p.

6. Keltsev N.V. Osnovy adsorbtsionnoy tekhniki . Moscow: Khimiya, 1984. 592 p.

7. Avgushevich I.V., Bronovets T.M. Standartnye metody ispytaniya ugley. Klassifikatsiya ugley . Moscow: NTK "Trek", 2008. 368 p.

8. Aktivirovannye ugli Petrodarco - effektivnye activirovannye ugli dlya udaleniya vysokomolekulyarnykh soedineniy i chastits mineralnykh masel iz adsorbtsionnykh rastvorov . Norit Digital Library, 2011, available at: http://tdtka.ru/wp-content/uploads/2012/10/3.2.-Aktivirovannyie-ugli-Petrodarco.pdf (accessed 5 October 2014).

9. Silin M.P. Tekhnologiya sakhara . Moscow: Kniga po trebovaniyu, 1967. 625 p.

Белоусов Константин Сергеевич (Пермь, Россия) - аспирант кафедры порошкового материаловедения Пермского национального исследовательского политехнического университета (614990, г. Пермь, Комсомольский пр., 29, e-mail: [email protected]).

Минькова Анфиса Андреевна (Пермь, Россия) - магистрант кафедры порошкового материаловедения Пермского национального исследовательского политехнического университета (614990, г. Пермь, Комсомольский пр., 29; e-mail: [email protected]).

Генералова Ксения Николаевна (Пермь, Россия) - магистрант кафедры порошкового материаловедения Пермского национального исследовательского политехнического университета (614990, г. Пермь, Комсомольский пр., 29; e-mail: [email protected]).

Олонцев Валентин Федорович (Пермь, Россия) - доктор технических наук, профессор кафедры порошкового материаловедения Пермского национального исследовательского политехнического университета (614990, г. Пермь, Комсомольский пр., 29; e-mail: [email protected]).

About the authors

Konstantin S. Belousov (Perm, Russian Federation) - graduate student, department of powdered materials, Perm National Research Polytechnic University (Komsomolsky av., 29, Perm, 614990, Russian Federation, email: [email protected]).

Anfisa A. Minkova (Perm, Russian Federation) - master student, department of powdered materials, Perm National Research Polytechnic University (Komsomolsky av., 29, Perm, 614990, Russian Federation; e-mail: [email protected]).

Kseniya N. Generalova (Perm, Russian Federation) - master student, department of powdered materials, Perm National Research Polytechnic University (Komsomolsky av., 29, Perm, 614990, Russian Federation, e-mail: [email protected]).

Valentin F. Olontsev (Perm, Russian Federation) - doctor of technical science, professor, department of powdered materials, Perm National Research Polytechnic University (Komsomolsky av., 29, Perm, 614990, Russian Federation; e-mail: [email protected]).

Изучение процессов адсорбции активированным углем различных веществ из растворов

Цель:

Проверить адсорбционную способность угля;

Изучить влияние природы растворителя на адсорбцию;

Познакомиться с хроматографическим методом анализа.

Оборудование: пробирки, воронка, фильтровальная бумага, адсорбционная колонка, активированный уголь, растворы нитрата свинца и йодида калия, водный и спиртовой раствор фуксина, смесь солей меди, железа, кобальта.

Задание: Проделать следующие опыты, записать наблюдения и сделать выводы.

Опыт 1. Адсорбция углем различных веществ из растворов. В одну пробирку налейте раствор индиго, в другую - раствор йода. В каждую пробирку насыпьте около 0,2г. древесного угля, хорошо взболтайте и отфильтруйте. Исследуйте фильтрат в пробирках на запах и цвет. Объясните наблюдаемые явления.

Опыт 2. Адсорбция ионов свинца углем. В две пробирки налейте по 5мл. 0,05%-ного раствора нитрата свинца. В одну пробирку добавьте небольшое кол-во раствора йодида калия для доказательства наличия ионов свинца в растворе. В другую пробирку добавьте около 0,2г. древесного угля и взболтайте в течение 5 мин. Отфильтруйте раствор и проверьте присутствие ионов свинца реакцией с йодидом калия. Напишите ионное уравнение качественной реакции Рb2+. Объясните наблюдаемое явление.

Опыт 3. Влияние природы растворителя на адсорбцию. В одну пробирку налейте слабоокрашенного водного раствора фуксина, в другую – такое же кол-во спиртового раствора. В обе пробирки внесите по 0,2г. древесного угля и взболтайте в течение 5 мин. Отфильтруйте растворы. Почему о одном случае адсорбция идет хорошо, а в другом плохо?

Опыт 4. Хроматографическое разделение солеи. Для хроматографического разделения солей можно использовать стеклянную трубку. В качестве адсорбента используют оксид алюминия, заполняя пространство над ватой примерно на 3/4. Заполненную колонку укрепляют в штативе над стаканом, для уплотнения адсорбента вливают небольшую порцию воды, а затем производят разделение смеси (смесь вливают малыми порциями). Смесь готовят, сливая в химический стакан по 5мл. 1%-ные растворы FeCl3, Cu(NO3)2, Co(NO3)2. Зарисуйте колонку и укажите порядок расположения веществ в ней при их разделении.

Опыт 5. Адсорбция белками жира и примесей из бульона. Белок яйца смешать с натертой на крупной терке морковью. Добавить смесь в теплый бульон и довести до кипения. Остудить. Полученный раствор отфильтровать.

Контрольные вопросы:

1.В чем проявляется особенность поверхностного слоя на границе раздела фаз? Что такое адсорбция?

© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары