Вконтакте Facebook Twitter Лента RSS

Вертикальное оперение самолета. Конструкция оперения

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ОПЕРЕНИЕ САМОЛЁТА

Оперемние (оперение летательного аппарата, ракеты) - аэродинамические поверхности, обеспечивающие устойчивость, управляемость и балансировку самолёта в полёте. Оно состоит из горизонтального и вертикального оперения.

Основные требования к оперению:

Обеспечение высокой эффективности при минимальном лобовом сопротивлении и наименьшей массе конструкции;

Возможно меньшее затенение оперения другими частями самолёта - крылом, фюзеляжем, гондолами двигателей, а также одной части оперения другой;

Отсутствие вибраций и колебаний типа флаттера и бафтинга;

Более позднее, чем на крыле, развитие волнового кризиса.

Горизонтальное оперение (ГО)

Обеспечивает продольную устойчивость, управляемость и балансировку. Горизонтальное оперение состоит из неподвижной поверхности - стабилизатора и шарнирно подвешенного к нему руля высоты. У самолётов с хвостовым расположением горизонтальное оперение устанавливается в хвостовой части самолёта - на фюзеляже или на верху киля (T-образная схема).

В схеме «утка» оперение располагается в носовой части самолёта перед крылом. Возможна комбинированная схема, когда у самолёта с хвостовым оперением ставится дополнительное переднее оперение - схема с ПГО (переднее горизонтальное оперение), позволяющая использовать преимущества обеих указанных схем. Схемы «бесхвостка», «летающее крыло» горизонтального оперения не имеют.

Неподвижный стабилизатор обычно имеет фиксированный угол установки относительно продольной оси самолёта. Иногда предусматривается регулировка этого угла на земле. Такой стабилизатор называется переставным.

На тяжёлых самолётах для повышения эффективности продольного управления угол установки стабилизатора с помощью дополнительного привода может изменяться в полёте, обычно на взлёте и посадке, а также для балансировки самолёта на заданном режиме полёта. Такой стабилизатор называется подвижным.

На сверхзвуковых скоростях полёта эффективность руля высоты резко падает. Поэтому у сверхзвуковых самолётов вместо классической схемы ГО с рулем высоты применяется управляемый стабилизатор (ЦПГО), угол установки которого регулируется лётчиком с помощью командного рычага продольного управления или бортовым компьютером самолёта. Руль высоты в этом случае отсутствует.

Вертикальное оперение (ВО)

Обеспечивает самолёту путевую устойчивость, управляемость и балансировку относительно вертикальной оси. Оно состоит из неподвижной поверхности - киля и шарнирно подвешенного к нему руля направления.

Цельноповоротное ВО применяется весьма редко. Эффективность ВО можно повысить путём установки форкиля - передний наплыв в корневой части киля и дополнительным подфюзеляжным гребнем. Другой способ - применение нескольких (обычно не более двух одинаковых) килей.

Формы оперения

Т-образное хвостовое оперение самолёта (Ту-154)

Формы поверхностей оперения определяются теми же параметрами, что и формы крыла: удлинением, сужением, углом стреловидности, аэродинамическим профилем и его относительной толщиной. Как и в случае с крылом различают трапецевидное, овальное, стреловидное и треугольное оперение.

Схема оперения определяется числом его поверхностей и их взаимным расположением. Наиболее распространены следующие схемы:

Схема с центральным расположением вертикального оперения в плоскости симметрии самолёта - горизонтальное оперение в этом случае может располагаться как на фюзеляже, так и на киле на любом удалении от оси самолёта (схему с расположением ГО на конце киля принято называть Т-образным оперением).

Пример: Ту-154

Схема с разнесенным вертикальным оперением - (часто называют Н-образным) две его поверхности могут крепиться по бокам фюзеляжа или на концах ГО. В двухбалочной схеме фюзеляжа поверхности ВО устанавливаются на концах фюзеляжных балок. На самолётах типа «утка», «бесхвостка», «летающее крыло» разнесенное ВО устанавливается на концах крыла или в средней его части.

Пример: Пе-2, Lockheed P-38 Lightning

V-образное оперение, состоящее из двух наклонных поверхностей, выполняющих функции и горизонтального и вертикального оперения. Из-за сложности управления и, как следствие, малой эффективности такое оперение широкого применения не получило. (Правда применение компьютерных пилотажных систем изменило ситуацию в лучшую сторону. Текущее управление V-образным оперением в оснащенных им новейших самолётах берет на себя бортовой компьютер, - пилоту лишь достаточно задать стандартной ручкой управления направление полёта (влево-вправо, вверх-вниз), и компьютер сделает все, что для этого нужно).

Пример: F-117

Скошенное оперение (типа «бабочка», или оперение Рудлицкого)

Пример: Me.262 HG III

Стабилизаторы и кили

Имеют полную аналогию с крылом, как по составу и конструкции основных элементов - лонжеронов, продольных стенок, стрингеров, нервюр, так и по типу силовых схем. Для стабилизаторов вполне успешно используются лонжеронная, кессонная и моноблочная схемы, а для килей последняя схема применяется реже, из-за определённых конструктивных трудностей при передаче изгибающего момента с киля на фюзеляж. Контурный стык силовых панелей киля с фюзеляжем в этом случае требует установки большого числа силовых шпангоутов или установки на фюзеляже в плоскости силовых панелей киля мощных вертикальных балок, опирающихся на меньшее число силовых шпангоутов фюзеляжа.

У стабилизаторов можно избежать передачи изгибающих моментов на фюзеляж, если лонжероны или силовые панели левой и правой его поверхностей связать между собой по кратчайшему пути в центральной его части. Для стреловидного стабилизатора это требует перелома оси продольных элементов по борту фюзеляжа и установки двух усиленных бортовых нервюр. Если продольные элементы такого стабилизатора без перелома осей доходят до плоскости симметрии самолёта, то кроме бортовых силовых нервюр, передающих крутящий момент, потребуется ещё одна силовая нервюра в плоскости симметрии самолёта.

Рули и элероны

Ввиду полной идентичности конструкции и силовой работы рулей и элеронов в дальнейшем для краткости речь будет идти только о рулях, хотя все сказанное будет полностью применимо и к элеронам. Основным силовым элементом руля (и элерона, естественно), работающим на изгиб и воспринимающим практически всю перерезывающую силу, является лонжерон, который опирается на шарнирные опоры узлов подвески.

Основная нагрузка рулей - воздушная аэродинамическая, возникающая при балансировке, маневрировании самолёта или при полёте в неспокойном воздухе. Воспринимая эту нагрузку, лонжерон руля работает как неразрезная многоопорная балка. Особенность его работы заключается в том, что опоры руля закреплены на упругих конструкциях, деформации которых под нагрузкой существенно влияют на силовую работу лонжерона руля.

Восприятие крутящего момента руля обеспечивается замкнутым контуром обшивки, который в местах выреза под кронштейны крепления замыкается стенкой лонжерона. Максимальный крутящий момент действует в сечении кабанчика управления, к которому подходит тяга управления. Местом расположения кабанчика (тяги управления) по размаху руля можно существенно влиять на деформации руля при кручении.

Аэродинамическая компенсация рулей

В полёте при отклонении рулевых поверхностей возникают шарнирные моменты, которые уравновешиваются усилиями летчика на командных рычагах управления. Эти усилия зависят от размеров и угла отклонения руля, а также от скоростного напора. На современных самолётах усилия управления получаются слишком большими, поэтому приходится в конструкции рулей предусматривать специальные средства для уменьшения шарнирных моментов и уравновешивающих их усилий управления. С этой целью используется аэродинамическая компенсация рулей, суть которой заключается в том, что часть аэродинамических сил руля создают момент относительно оси вращения, противоположный основному шарнирному моменту.

Наибольшее распространение получили следующие виды аэродинамической компенсации:

Роговая - на конце руля часть его площади в виде «рога» располагается спереди от оси шарниров, что обеспечивает создание момента обратного знака по отношению к основному шарнирному;

Осевая - часть площади руля по всему размаху располагается спереди от оси шарниров (ось шарниров смещается назад), что уменьшает шарнирный момент;

Внутренняя - обычно используется на элеронах и представляет собой пластины, прикреплённые к носку элерона спереди, которые связаны гибкой перегородкой со стенками камеры внутри крыла. При отклонении элерона в камере создаётся разница давлений над и под пластинами, которая уменьшает шарнирный момент.

Сервокомпенсация - в хвостовой части руля шарнирно подвешивается небольшая поверхность, которая тягой связывается с неподвижной точкой на крыле или оперении. Эта тяга обеспечивает автоматическое отклонение сервокомпенсатора в сторону, противоположную отклонению руля. Аэродинамические силы на сервокомпенсаторе уменьшают шарнирный момент руля.

Углы отклонения и эффективность работы такого компенсатора пропорциональны углам отклонения руля, что не всегда оправдывает себя, т.к. усилия управления зависят не только от углов отклонения руля, но и от скоростного напора. Более совершенным является пружинный сервокомпенсатор, у которого за счёт включения в кинематику управления пружины с предварительной затяжкой углы отклонения пропорциональны усилиям управления руля, что наилучшим образом отвечает назначению сервокомпенсатора - уменьшать эти усилия.

Средства аэродинамической балансировки самолёта

Любой установившийся режим полёта самолёта, как правило, выполняется с отклоненными рулями, что обеспечивает уравновешивание - балансировку - самолёта относительно его центра масс. Возникающие при этом усилия на органах управления в кабине принято называть балансировочными. Чтобы зря не утомлять летчика и избавить его от этих ненужных усилий на каждой рулевой поверхности устанавливается триммер, позволяющий полностью снимать балансировочные усилия.

Триммер конструктивно полностью идентичен сервокомпенсатору и также шарнирно подвешивается в хвостовой части руля, но, в отличие от сервокомпенсатора, имеет дополнительное ручное или электромеханическое управление. Летчик, отклоняя триммер в сторону противоположную отклонению руля, добивается уравновешивания руля на заданном угле отклонения при нулевых усилиях на командном рычаге. В некоторых случаях используется комбинированная поверхность триммер-сервокомпенсатор, который при включении привода работает в качестве триммера, а при отключенном - выполняет функции сервокомпенсатора.

Следует добавить, что триммер может использоваться лишь в таких системах управления, в которых усилия на командных рычагах напрямую связаны с шарнирным моментом руля - системы механического безбустерного управления или системы с обратимыми бустерами. В системах с необратимыми бустерами - гидроусилителями - естественные усилия на огранах управления очень малы, и для имитации лётчику «механического управления» дополнительно создаются пружинными загрузочными механизмами и от шарнирного момента руля не зависят. В таком случае триммеры на рулях не ставятся, а балансировочные усилия снимаются специальными устройствами - механизмами эффекта триммирования, установленными в проводке управления.

Другим средством балансировки самолёта в установившемся режиме полёта может служить переставной стабилизатор. Обычно такой стабилизатор крепится шарнирно на задних узлах подвески, а передние узлы соединяются с силовым приводом, который, перемещая носовую часть стабилизатора вверх или вниз, изменяет углы его установки в полете. Подбирая нужный угол установки, летчик может уравновесить самолёт при нулевом шарнирном моменте на руле высоты. Этот же стабилизатор обеспечивает и требуемую эффективность продольного управления самолёта на взлете и посадке.

Средства устранения флаттера рулей и элеронов

Причиной возникновения изгибно-элеронного и изгибно-рулевого флаттера является их массовая несбалансированность относительно оси шарниров. Обычно центр масс рулевых поверхностей расположен позади оси вращения. В результате при изгибных колебаниях несущих поверхностей силы инерции, приложенные в центре масс рулей, за счёт деформаций и люфтов в проводке управления отклоняют рули на некоторый угол, что приводит к появлению дополнительных аэродинамических сил, увеличивающих изгибные деформации несущих поверхностей. С ростом скорости раскачивающие силы растут и при скорости, называемой критической скоростью флаттера, происходит разрушение конструкции.

Радикальным средством устранения данного вида флаттера является установка в носовой части рулей и элеронов балансировочных грузов с целью перемещения их центра масс вперед.

100-процентная весовая балансировка рулей, при которой центр масс располагается на оси вращения руля, обеспечивает полное устранение причины возникновения и развития флаттера.

Выбор и расчёт

Глубокое сваливание у самолётов с Т-образным оперением.

На органы оперения в полёте действуют распределённые аэродинамические силы, величина и закон распределения которых задаются нормами прочности или определяются продувками. Массовыми инерционными силами оперения ввиду их малости обычно пренебрегают. Рассматривая работу элементов оперения при восприятии внешних нагрузок, по аналогии с крылом следует различают общую силовую работу агрегатов оперения как балок, в сечениях которых действуют перерезывающие силы, изгибающие и крутящие моменты, и работу местную от воздушной нагрузки, приходящейся на каждый участок обшивки с подкрепляющими её элементами.

Различные агрегаты оперения отличаются друг от друга назначением и способами закрепления, что вносит свои особенности в силовую работу и влияет на выбор их конструктивно-силовых схем. Требуемая эффективность оперения обеспечивается правильным выбором форм и расположения его поверхностей, а также численных значений параметров этих поверхностей. Чтобы избежать затенения органы оперения не должны попадать в спутную струю крыла, гондол и других агрегатов самолёта. Не меньшее влияние на эффективность оперения оказывает и применение компьютерных пилотажных систем. Например до появления достаточно совершенных самолётных бортовых компьютеров V-образное оперение почти не применялось, из-за его сложности в управлении.

Более позднее наступление волнового кризиса на оперении достигается увеличенными по сравнению с крылом углами стреловидности и меньшими относительными толщинами. Избежать флаттера и бафтинга можно известными мерами устранения этих явлений аэроупругости.

Конструкция оперения

Оперение самолетов по внешним формам, характеру нагружения и работе подобно крылу. Поэтому оно состоит из тех же конструктивных элементов, что и крыло.

Силовая схема стабилизатора и киля состоит из продольного набора (лонжеронов, стенок и стрингеров), поперечного набора (нервюр) и обшивки. Как и крылья, стабилизатор и киль могут быть лонжеронными или моноблочными (кессонными). На малых и средних скоростях полета при малых удлинениях стабилизатора и киля более выгодной оказывается лонжеронная конструкция.

Конструкция киля по сравнению со стабилизатором особых отличий не имеет. На небольших сверхзвуковых самолетах при большой стреловидности киля применяют лонжеронную схему с внутренним подкосом.

На больших самолетах стабилизаторы и кили обычно выполняют моноблочными с двумя или тремя лонжеронами.

Хвостовое оперение

Хвостовое оперение - аэродинамические профили, расположенные в хвостовой части самолета. Выглядят они как относительно небольшие «крылышки», которые традиционно устанавливаются в горизонтальной и вертикальной плоскостях и имеют название «стабилизаторы» X. О. предназначено для придания устойчивости и управляемости самолету. X. О. состоит изстабилизатора, рулей высоты, киля и руля управления.

Именно по этому параметру хвостовое оперение и подразделяется, прежде всего - на горизонтальное и вертикальное, соответственно с плоскостями, в которых устанавливается. Классическая схема - один вертикальный и два горизонтальных стабилизатора, которые непосредственно соединены с хвостовой частью фюзеляжа. Именно такая схема наиболее широко используемая на гражданских авиалайнерах. Однако существуют и другие схемы - например, Т-образное, которое применяется на Ту-154.

В подобной схеме горизонтальное оперение прикреплено к верхней части вертикального, и если смотреть спереди или сзади самолета, оно напоминает букву «Т», от чего и получило название. Также существует схема с двумя вертикальными стабилизаторами, которые вынесены на законцовки горизонтального оперения, пример самолета с таким типом оперения - Ан-225. Также два вертикальных стабилизатора имеет большинство современных истребителей, однако установлены они на фюзеляже, поскольку те имеют форму фюзеляжа несколько более «приплюснутую» по горизонтали, по сравнению с гражданскими и грузовыми воздушными судами.

Ну и в целом, существуют десятки различных конфигураций хвостового оперений и каждая имеет свои достоинства и недостатки, о которых речь пойдет несколько ниже. Даже устанавливается оно не всегда в хвостовой части самолета, однако это касается лишь горизонтальных стабилизаторов

Хвостовое оперение самолета Ту-15

Принцип работы хвостового оперения. Основные функции

А теперь о функциях хвостового оперения, зачем же оно необходимо? Поскольку оно еще называется стабилизаторами, то можно предположить, что они что-то стабилизируют. Верно, это так. Хвостовое оперение необходимо для стабилизации и балансировки самолета в воздухе, а еще для управления самолетом по двум осям - рысканье (влево-вправо) и тангаж (вверх-вниз).

Вертикальное хвостовое оперение

оперение хвостовой самолет киль

Функции вертикального оперения - стабилизация самолета. Кроме двух вышеперечисленных осей, еще существует третья - крен (вращение вокруг продольной оси самолета), так вот, при отсутствии вертикального стабилизатора, крен вызывает раскачивание самолета относительно вертикальной оси, притом раскачивание очень серьезное и абсолютно неконтролируемое. Вторая функция - управление по оси рысканья.

К задней кромке вертикального стабилизатора прикреплен отклоняемый профиль, который управляется из кабины пилотов. Это две основные функции вертикального хвостового оперения, абсолютно неважно количество, позиция и форма вертикальных стабилизаторов - эти две функции они выполняют всегда

Виды вертикальных хвостовых оперений

Горизонтальное хвостовое оперение

Теперь о горизонтальном хвостовом оперении. Оно также имеет две основные функции, первую можно охарактеризовать как балансировочную. Для того чтобы понять что тут к чему, можно провести простой эксперимент. Необходимо взять какой-либо длинный предмет, например линейку и положить ее на один вытянутый палец так, чтобы она не падала и не клонилась ни назад, ни вперед, т.е. найти ее центр тяжести. Итак, теперь у линейки (фюзеляжа) есть крыло (палец), уравновесить ее вроде не сложно. Ну а теперь необходимо представить, что в линейку закачиваются тонны топлива, садятся сотни пассажиров, загружается огромное количество груза.

Естественно, все это загрузить идеально относительно центра тяжести просто невозможно, однако есть выход. Необходимо прибегнуть к помощи пальца второй руки и поместить его сверху от условно задней части линейки, после чего сдвинуть «передний» палец к заднему. В итоге получилась относительно устойчивая конструкция. Можно еще сделать по другому: поместить «задний» палец под линейку и сдвинуть «передний» вперед, в сторону носовой части. Оба этих примера показывают принцип действия горизонтального хвостового оперения.

Более распространен именно первый тип, когда горизонтальные стабилизаторы создают силу, противоположную по направлению к подъемной силе крыльев. Ну и вторая их функция - управление по оси тангажа. Здесь все абсолютно также как и с вертикальным оперением. В наличии отклоняемая задняя кромка профиля, которая управляется из кокпита и увеличивает либо уменьшает силу, которую создает горизонтальный стабилизатор благодаря своему аэродинамическому профилю. Здесь следует сделать оговорку, относительно отклоняемой задней кромки, ведь некоторые самолеты, особенно боевые, имеют полностью отклоняемые плоскости, а не только их части, это касается и вертикального оперения, однако принцип работы и функции от этого не меняются.

Виды горизонтальных хвостовых оперений

А теперь о том, почему конструкторы отходят от классической схемы. Сейчас самолетов огромное количество и их предназначение вместе с характеристиками очень сильно отличается. И, по сути, здесь необходимо разбирать конкретный класс самолетов и даже конкретный самолет в отдельности, но чтобы понять основные принципы будет достаточно нескольких примеров.

Первый - уже упоминаемый Ан-225, имеет двойное вынесенное вертикальное оперение по той причине, что он может нести на себе такую объемную вещь как челнок Буран, который в полете затенял бы в аэродинамическом плане единственный вертикальный стабилизатор, расположенный по центру, и эффективность его была бы чрезвычайно низкой. Т-образное оперение Ту-154 также имеет свои преимущества. Поскольку оно находится даже за задней точкой фюзеляжа, по причине стреловидности вертикального стабилизатора, плечо силы там самое большое (здесь можно опять прибегнуть к линейке и двум пальцам разных рук, чем ближе задний палец к переднему, тем большое усилие на него необходимо), потому его можно сделать меньшим и не таким мощным, как при классической схеме. Однако теперь все нагрузки, направленные по оси тангажа передаются не на фюзеляж, а на вертикальный стабилизатор, из-за чего тот необходимо серьезно укреплять, а значит и утяжелять.

Кроме того, еще и дополнительно тянуть трубопроводы гидравлической системы управления, что еще больше прибавляет вес. Да и в целом такая конструкция более сложная, а значит менее безопасная. Что же касается истребителей, почему они используют полностью отклоняемые плоскости и парные вертикальные стабилизаторы, то основная причина - увеличение эффективности. Ведь понятно, что лишней маневренности у истребителя быть не может

Т-образное оперение самолета содержит киль, на верхней части которого закреплен поворотный стабилизатор, снабженный приводом и шарнирными узлами крепления, состоящими из пары вилок, каждая из которых включает в себя внешнюю и внутреннюю проушины на лонжероне стабилизатора и проушину киля, в отверстиях которых на подшипниках смонтировано соединительное устройство. Каждая из проушин киля состоит из двух частей и в ней установлен стакан с шаровым подшипником. Каждая внешняя и внутренняя проушины вилки стабилизатора соединены с проушинами киля полым болтом, внутри которого размещен дублирующий болт, стянутый гайкой, поверх которого установлена гайка со стопором для фиксации положения проушин киля относительно вилки. Концы упомянутых полых болтов расположены между вилками с торцевым зазором и соединены между собой охватывающей их промежуточной втулкой, на внешней стороне которой установлена качалка управления рулями стабилизатора, зафиксированная стопорным кольцом с болтом. Изобретение направлено на повышение живучести самолета. 6 ил.

Известны самолеты с Т-образным хвостовым оперением, у которого поворотный стабилизатор закреплен на задних шарнирных соединениях с общей осью вращения, состоящей из проушин, вилок и соединяющих их болтов, и имеющий переднее шарнирное соединение, связанное с каркасом самолета механизмом управления стабилизатора (см. Руководство по эксплуатации самолета ТУ-154М, раздел 055.50.00, стр.3/4, рис.1, февраль 22/85).

Однако известное устройство обладает целым рядом недостатков.

Отсутствует дублирование жизненно важных элементов, т.е. тех элементов, разрушение которых приводит к катастрофе самолета. Такими элементами являются задние шарнирные соединения установки поворотного стабилизатора на киль самолета. Безопасность полета обеспечивается за счет очень малых расчетных напряжений в элементах шарнирных узлов, что приводит к дополнительному весу конструкции, т. к. приходится увеличивать габариты (толщину) проушин, габариты обтекателей, прикрывающих эти проушины, а значит и увеличению аэродинамического сопротивления.

Задачей настоящего изобретения является увеличение живучести самолета путем повышения надежности конструкции Т-образного хвостового оперения.

Решение технической задачи обеспечивается тем, что конструкция подвижного крепления стабилизатора на киле имеет дублирующие жизненноважные элементы.

Хвостовое оперение самолета имеет поворотный стабилизатор 1, закрепленный на киле 2 на двух шарнирных узлах крепления с соединительным устройством, каждый из которых состоит из вилки (см. фиг.2), содержащей внешнюю проушину 3 и внутреннюю проушину 4, которые выполнены на лонжероне 5 стабилизатора 1, и проушины 6 киля 2. В проушине 6 установлен стакан 7, закрепленный гайкой 8, в котором размещен шаровый подшипник 9, зафиксированный гайкой 10. Проушины 3,4 вилки соединяются с проушиной 6 болтом 11, внутри которого расположен дублирующий болт 12, затянутый гайкой 13. Пакет деталей 9,14 через болт 11 стянут гайкой 15, имеющей внешнюю левую резьбу. На гайку 15 наворачивается гайка 16, фиксирующая положение проушины 6 относительно вилки киля. Гайка 16 стопорится шайбой 17. Концы болтов 11 соединены втулкой 18 с бронзовым вкладышем. На втулке 18 с внешней стороны установлена качалка 19 управления рулями стабилизатора, которая фиксируется на ней кольцом 20 через болт 21, одновременно соединяющим втулку 18 с болтом 11.

Работа осуществляется следующим образом.

В случае разрушения в соединительном устройстве болта 11, нагрузку воспринимает болт 12. Проушина 6 киля 2 состоит из двух частей равной толщины и, в случае разрушения одной из половин, нагрузку воспринимает вторая половина проушины.

При разрушении одной из четырех проушин 3,4 вилок стабилизатора аэродинамическая нагрузка от него передается на проушины 6 киля 2 через изгиб полых болтов 11, соединенных между собой втулкой 18, берущей изгибающий момент и перерезывающую силу в месте стыка болтов. При разрушении внешней проушины 3 вилки стабилизатора полые болты 11 с втулкой 18 работают как консольная балка, опертая на соседнее шарнирное соединение и внутреннюю проушину 4 вилки. При разрушении внутренней проушины 4 болты с втулкой 18 работают как двухопорная балка, опирающаяся на внешнюю проушину 3 вилки стабилизатора и соседнее шарнирное соединение.

Использование изобретения позволит обеспечить повышение надежности и снижение аварий и катастроф путем увеличения безопасности полетов самолетов с Т-образным хвостовым оперением за счет дублирования жизненноважных элементов конструкции крепления стабилизатора на киле.

Формула изобретения

Хвостовое оперение самолета, содержащее киль, на верхней части которого закреплен поворотный стабилизатор, снабженный шарнирными узлами крепления с соединительным устройством на подшипниках, состоящими из пары вилок, каждая из которых включает в себя внешнюю и внутреннюю проушины на лонжероне стабилизатора и проушину киля, отличающееся тем, что соединительное устройство установлено в обеих вилках стабилизатора и проушинах киля, при этом каждая из проушин киля состоит из двух частей и в ней установлен стакан с шаровым подшипником, а каждая внешняя и внутренняя проушины вилки стабилизатора соединены с проушинами киля полым болтом, внутри которого размещен дублирующий болт, стянутый гайкой, поверх которого установлена гайка со стопором для фиксации положения проушин киля относительно вилки, при этом концы упомянутых полых болтов расположены между вилками с торцевым зазором и соединены между собой охватывающей их промежуточной втулкой, на внешней стороне которой установлена качалка управления рулями стабилизатора, зафиксированная стопорным кольцом с болтом.

Конструкция хвостового оперения существенно зависит от общей схемы самолета. Из за особенностей размещения, эффективность оперения находится под влиянием крыла и воздушного винта. Установка оперения на фюзеляже или хвостовых балках определяет и конструктивную схему фюзеляжа (балок) в этом месте.

Примеры схем хвостового оперения, заимствованные из практики приведены на рис 4. Возможны и другие варианты хвостового оперения, которые здесь не рассматриваются (например схема V-образного оперения).

Основные схемы оперения

Наиболее распространенной является схема с одним килем и стабилизатором, установленным на фюзеляже или киле - (Рис 4 а, б, в). Она обеспечивает конструктивную простоту и жесткость, хотя в случае Т-образного хвостового оперения (Рис 4в) необходимо принимать меры, предотвращающие его флаттер.

Схема Т-образного оперения обладает и рядом приемуществ. Расположение горизонтального оперения в верхней части киля создает для последнего эффект концевой шайбы, что может способствовать уменьшению потребной площади вертикального оперения. С другой стороны высокорасположенное горизонтальное оперение находится в зоне небольшого скоса потока от крыла при средних (полетных) углах атаки, что позволяет уменьшить потребную площадь горизонтального оперения. Таким образом площадь Т-образного оперения может быть меньше площади оперения с низким расположением горизонтального оперения.

Необходимая площадь вертикального оперения в значительной мере определяется длиной и площадью боковой проекции части фюзеляжа, находящейся впереди центра тяжести самолета. Чем длиннее носовая част фюзеляжа, (и больше площадь ее боковой проекции) тем при прочих равных условиях больше площадь вертикального оперения, необходимая для устранения дестабилизирующего момента этой части фюзеляжа.

Если двигатели расположены на крыле, то полет с одним отказавшим двигателем является условием для выбора размеров киля и руля направления многодвигательного самолета.

Значительная высота вертикального оперения (в случае его потребной площади) может привести к появлению моментов по крену при отклонении руля направления в результате большого плеча между центром давления вертикального оперения и продольной осью самолета. Если такая опасность существует, заслуживает внимания разнесенная двухкилевая схема хвостового оперения, уменьшающая этот эффект (Рис 4д). Для двухбалочной (Рис 4г) или рамной схемы самолета выбор такого оперения очевиден. Поскольку расположение килей на концах горизонтального оперения создает эффект концевых шайб, то площадь горизонтального оперения может быть уменьшена.

Размещено на Allbest.ru

Подобные документы

    Устойчивость, управляемость самолета. Принцип действия рулей. Центровка самолета, фокус его крыла. Понятие аэродинамической компенсации. Особенности поперечной устойчивости и управляемости на больших скоростях полета. Боковая устойчивость и управляемость.

    лекция , добавлен 23.09.2013

    Элероны - подвижные части крыла, расположенные у задней кромки крыла на его концах и отклоняемые одновременно в противоположные стороны. Отклонение одного элерона вверх, а другого вниз приводит к созданию поперечного момента, вызывающего крен самолета.

    контрольная работа , добавлен 25.05.2008

    Конструктивные и аэродинамические особенности самолета. Аэродинамические силы профиля крыла самолета Ту-154. Влияние полетной массы на летные характеристики. Порядок выполнения взлета и снижения самолета. Определение моментов от газодинамических рулей.

    курсовая работа , добавлен 01.12.2013

    Геометрические и аэродинамические характеристики самолета. Летные характеристики самолета на различных этапах полета. Особенности устойчивости и управляемости самолета. Прочность самолета. Особенности полета в неспокойном воздухе и в условиях обледенения.

    книга , добавлен 25.02.2010

    Расчет геометрических характеристик фюзеляжа самолета, горизонтальное оперение. Расчет минимального коэффициента лобового сопротивления пилона. Взлетно-посадочные характеристики самолета. Построение зависимости аэродинамического качества от угла атаки.

    курсовая работа , добавлен 29.10.2012

    Схемы крыла, фюзеляжа, оперения, шасси и двигателей самолета. Удельная нагрузка на крыло. Расчет стартовой тяговооруженности, взлетной массы и коэффициента отдачи по коммерческой нагрузке. Определение основных геометрических параметров самолета.

    курсовая работа , добавлен 20.09.2012

    Техническое описание самолета. Система управления самолетом. Противопожарная и топливная система. Система кондиционирования воздуха. Обоснование проектных параметров. Аэродинамическая компоновка самолета. Расчет геометрических характеристики крыла.

    курсовая работа , добавлен 26.05.2012

    Построение докритической поляры самолета Ан-225. Рекомендуемые значения толщин профилей крыла и оперения. Расчёт полётных характеристик самолёта, построение зависимости коэффициента подъемной силы от угла атаки. Зависимость отвала поляры от числа Маха.

    курсовая работа , добавлен 17.06.2015

    Особенности проектирования пассажирского самолета. Параметрический анализ однотипных аэропланов и технических требований к ним. Формирование облика самолета, определение массы конструкции, компоновка фюзеляжа, багажных помещений и оптимизация параметров.

    курсовая работа , добавлен 13.01.2012

    Аэродинамическая компоновка самолета. Фюзеляж, крыло кессонного типа, оперение, кабина экипажа, система управления, шасси, гидравлическая система, силовая установка, топливная система, кислородное оборудование, система кондиционирования воздуха.

Оперение самолетов по внешним формам, характеру нагружения и работе подобно крылу. Поэтому оно состоит из тех же конструктивных элементов, что и крыло.

Силовая схема стабилизатора и киля состоит из продольного набора (лонжеронов, стенок и стрингеров), поперечного набора (нервюр) и обшивки. Как и крылья, стабилизатор и киль могут быть лонжеронными или моноблочными (кессонными). На малых и средних скоростях полета при малых удлинениях стабилизатора и киля более выгодной оказывается лонжеронная конструкция.

Конструкция киля по сравнению со стабилизатором особых отличий не имеет. На небольших сверхзвуковых самолетах при большой стреловидности киля применяют лонжеронную схему с внутренним подкосом.

На больших самолетах стабилизаторы и кили обычно выполняют моноблочными с двумя или тремя лонжеронами.

Хвостовое оперение

Хвостовое оперение - аэродинамические профили, расположенные в хвостовой части самолета. Выглядят они как относительно небольшие «крылышки», которые традиционно устанавливаются в горизонтальной и вертикальной плоскостях и имеют название «стабилизаторы» X. О. предназначено для придания устойчивости и управляемости самолету. X. О. состоит изстабилизатора, рулей высоты, киля и руля управления.

Именно по этому параметру хвостовое оперение и подразделяется, прежде всего - на горизонтальное и вертикальное, соответственно с плоскостями, в которых устанавливается. Классическая схема - один вертикальный и два горизонтальных стабилизатора, которые непосредственно соединены с хвостовой частью фюзеляжа. Именно такая схема наиболее широко используемая на гражданских авиалайнерах. Однако существуют и другие схемы - например, Т-образное, которое применяется на Ту-154.

В подобной схеме горизонтальное оперение прикреплено к верхней части вертикального, и если смотреть спереди или сзади самолета, оно напоминает букву «Т», от чего и получило название. Также существует схема с двумя вертикальными стабилизаторами, которые вынесены на законцовки горизонтального оперения, пример самолета с таким типом оперения - Ан-225. Также два вертикальных стабилизатора имеет большинство современных истребителей, однако установлены они на фюзеляже, поскольку те имеют форму фюзеляжа несколько более «приплюснутую» по горизонтали, по сравнению с гражданскими и грузовыми воздушными судами.

Ну и в целом, существуют десятки различных конфигураций хвостового оперений и каждая имеет свои достоинства и недостатки, о которых речь пойдет несколько ниже. Даже устанавливается оно не всегда в хвостовой части самолета, однако это касается лишь горизонтальных стабилизаторов


Хвостовое оперение самолета Ту-15

Теперь о горизонтальном хвостовом оперении. Оно также имеет две основные функции, первую можно охарактеризовать как балансировочную. Для того чтобы понять что тут к чему, можно провести простой эксперимент. Необходимо взять какой-либо длинный предмет, например линейку и положить ее на один вытянутый палец так, чтобы она не падала и не клонилась ни назад, ни вперед, т.е. найти ее центр тяжести. Итак, теперь у линейки (фюзеляжа) есть крыло (палец), уравновесить ее вроде не сложно. Ну а теперь необходимо представить, что в линейку закачиваются тонны топлива, садятся сотни пассажиров, загружается огромное количество груза.

Естественно, все это загрузить идеально относительно центра тяжести просто невозможно, однако есть выход. Необходимо прибегнуть к помощи пальца второй руки и поместить его сверху от условно задней части линейки, после чего сдвинуть «передний» палец к заднему. В итоге получилась относительно устойчивая конструкция. Можно еще сделать по другому: поместить «задний» палец под линейку и сдвинуть «передний» вперед, в сторону носовой части. Оба этих примера показывают принцип действия горизонтального хвостового оперения.

Более распространен именно первый тип, когда горизонтальные стабилизаторы создают силу, противоположную по направлению к подъемной силе крыльев. Ну и вторая их функция – управление по оси тангажа. Здесь все абсолютно также как и с вертикальным оперением. В наличии отклоняемая задняя кромка профиля, которая управляется из кокпита и увеличивает либо уменьшает силу, которую создает горизонтальный стабилизатор благодаря своему аэродинамическому профилю. Здесь следует сделать оговорку, относительно отклоняемой задней кромки, ведь некоторые самолеты, особенно боевые, имеют полностью отклоняемые плоскости, а не только их части, это касается и вертикального оперения, однако принцип работы и функции от этого не меняются.

Виды горизонтальных хвостовых оперений.

А теперь о том, почему конструкторы отходят от классической схемы. Сейчас самолетов огромное количество и их предназначение вместе с характеристиками очень сильно отличается. И, по сути, здесь необходимо разбирать конкретный класс самолетов и даже конкретный самолет в отдельности, но чтобы понять основные принципы будет достаточно нескольких примеров.

Первый - уже упоминаемый Ан-225, имеет двойное вынесенное вертикальное оперение по той причине, что он может нести на себе такую объемную вещь как челнок Буран, который в полете затенял бы в аэродинамическом плане единственный вертикальный стабилизатор, расположенный по центру, и эффективность его была бы чрезвычайно низкой. Т-образное оперение Ту-154 также имеет свои преимущества. Поскольку оно находится даже за задней точкой фюзеляжа, по причине стреловидности вертикального стабилизатора, плечо силы там самое большое (здесь можно опять прибегнуть к линейке и двум пальцам разных рук, чем ближе задний палец к переднему, тем большое усилие на него необходимо), потому его можно сделать меньшим и не таким мощным, как при классической схеме. Однако теперь все нагрузки, направленные по оси тангажа передаются не на фюзеляж, а на вертикальный стабилизатор, из-за чего тот необходимо серьезно укреплять, а значит и утяжелять.

Кроме того, еще и дополнительно тянуть трубопроводы гидравлической системы управления, что еще больше прибавляет вес. Да и в целом такая конструкция более сложная, а значит менее безопасная. Что же касается истребителей, почему они используют полностью отклоняемые плоскости и парные вертикальные стабилизаторы, то основная причина - увеличение эффективности. Ведь понятно, что лишней маневренности у истребителя быть не может.

Формы оперения самолётов (вид спереди): а - крестовидная; б и в - Т-образные; г и д - двухкилевые; е - трёхкилевая; ж и з - V-образные.

4.2. Нагрузки, действующие на хвостовое оперение:



4.3. Конструктивно-силовая схема хвостового оперения. Работа силовых элементов хвостового оперения в полёте:

Различные агрегаты оперения отличаются друг от друга назначением и способами закрепления, что вносит свои особенности в силовую работу и влияет на выбор их конструктивно-силовых схем. Рассмотрим отдельно особенности устройства и силовой работы основных агрегатов оперения (стабилизатора, киля, управляемого стабилизатора, руля и элерона).

Стабилизаторы и кили имеют полную аналогию с крылом как по составу и конструкции основных элементов - лонжеронов, продольных стенок, стрингеров, нервюр, так и по типу силовых схем. Для стабилизаторов вполне успешно используются лонжеронная, кессонная и моноблочная схемы, а для килей последняя схема применяется реже из-за определенных конструктивных трудностей при передаче изгибающего момента с киля на фюзеляж. Контурный стык силовых панелей киля с фюзеляжем в этом случае требует установки большого числа силовых шпангоутов или установки на фюзеляже в плоскости силовых панелей киля мощных вертикальных балок, опирающихся на меньшее число силовых шпангоутов фюзеляжа. У стабилизаторов можно избежать передачи изгибающих моментов на фюзеляж, если лонжероны или силовые панели левой и правой его поверхностей связать между собой по кратчайшему пути в центральной его части. Для стреловидного стабилизатора это требует перелома оси продольных элементов по борту фюзеляжа и установки двух усиленных бортовых нервюр. Если продольные элементы такого стабилизатора без перелома осей доходят до плоскости симметрии самолета, то кроме бортовых силовых нервюр, передающих крутящий момент, потребуется еще одна силовая нервюра в плоскости симметрии самолета.

Управляемый стабилизатор:

На виде в плане имеет стреловидную или треугольную форму. Ось вращения управляемого стабилизатора может быть перпендикулярной к плоскости симметрии самолета или располагаться под углом к ней.

Положение оси вращения выбирается так, чтобы усилия от шарнирного момента на до- и сверхзвуковых скоростях полета были бы минимальными. Крепление управляемого стабилизатора к фюзеляжу выполняется с помощью вала и двух подшипников.
Возможны две схемы крепления вала:

· вал жестко закреплен на стабилизаторе, а подшипники крепятся на фюзеляже

· вал (ось) закреплен неподвижно на фюзеляже, а подшипники установлены на стабилизаторе

В первом случае крепление вала к стабилизатору должно обеспечить передачу на вал перерезывающей силы, изгибающего момента и момента кручения, если качалка управления закреплена на валу.

В некоторых случаях качалка управления крепится на корневой усиленной нервюре, которая собирает весь крутящий момент с замкнутого контура стабилизатора. В этом случае крутящий момент на вал не передается. При такой схеме крепления обычно используется лонжеронная схема стабилизатора, т.к. при кессонной схеме передача изгибающего момента с силовых панелей на вал вызывает конструктивные трудности

В случае закрепления вала на фюзеляже подшипники крепятся на усиленных нервюрах стабилизатора, связанных с его продольными стенками.
На внешний подшипник передается вся перерезывающая сила консоли, а изгибающий момент парой сил передается на оба подшипника. Таким образом, на внешнем подшипнике происходит суммирование двух указанных усилий (R4).


В схеме с закреплением вала на фюзеляже достаточно просто обеспечивается передача изгибающего момента и при кессонной или моноблочной конструкциях стабилизатора. В этом случае силовые панели спереди и сзади опираются на продольные стенки, которые у корня сходятся к внутреннему бортовому подшипнику. Соответственно ширина силовых панелей и усилия в них от изгиба стабилизатора меняются от максимальной величины над внешним подшипником до нуля над внутренним подшипником. В результате изгибающий момент кессона стабилизатора уравновешивается реакциями подшипников. Качалка управления в таком стабилизаторе обычно устанавливается на корневой усиленной нервюре.

Подобный принцип передачи изгибающего момента можно использовать и при кессонной схеме стабилизатора с подвижным валом. В этом случае внешний конец вала должен опираться на силовую нервюру, связанную со стенками кессона.

4.4. Возможные неисправности конструктивных элементов хвостового оперения, их влияние на безопасность полётов:

См. вопр. 2.3.

4.5. Бафтинг хвостового оперения: причины и условия возникновения, возможные последствия и меры борьбы:

Оперение самолёта

аэродинамические поверхности самолёта, обеспечивающие его продольную и путевую устойчивость и управление им. Располагается обычно в хвостовой части, иногда в носовой части фюзеляжа. По конструкции О. с. сходно с Крыло м самолёта; его общая площадь составляет 0,25-0,5 площади крыльев. О. с. различают по виду спереди (рис. ), сбоку и по виду в плане (прямоугольное, трапециевидное, эллиптическое, а также стреловидное - для скоростных самолётов). Передняя часть горизонтального О. с., несущего руль высоты, называется Стабилизатор ом, а вертикального О. с., несущего руль направления, - килем (См. Киль). Руль высоты пилот отклоняет посредством ручки управления (отклонение её на себя вызывает подъём самолёта, от себя - его спуск), руль направления - посредством педалей (при нажиме ногой на правую педаль самолёт поворачивается вправо, на левую - влево). Углы отклонения рулей обычно ±(25-30)°. Для поддержания надлежащей продольной устойчивости самолёта стабилизатор обычно имеет подъёмный механизм, изменяющий по желанию пилота Атаки угол в пределах от +5° до –15°. Иногда подъёмный механизм связывают с ручкой управления, заставляя стабилизатор работать совместно с рулём высоты. Нередко рули упраздняют и получают цельноповоротное горизонтальное О. с. Таким же делают и вертикальное О. с. Кроме того, для улучшения поперечной устойчивости самолёта, обеспечиваемой Элерон ами, правую и левую половины горизонтального О. с. связывают с элеронным управлением, посредством которого элероны отклоняются в разные стороны (дифференциальное управление). По этой схеме работают и рули V-образного О. с.

С. Я. Макаров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Оперение самолёта" в других словарях:

    Элементы конструкции самолёта, обеспечивающие его устойчивость и управляемость в полёте. Обычно состоит из горизонтального и вертикального оперений и устанавливается на хвостовой части фюзеляжа. Горизонтальное оперение состоит из неподвижной… … Энциклопедия техники

    Оперение самолёта (планера) - аэродинамические поверхности для обеспечения его устойчивости и управляемости в полёте. Различают О. вертикальное (киль и руль направления) и горизонтальное (стабилизатор и руль высоты). Размещается в хвостовой (реже в носовой) части ЛА … Словарь военных терминов

    Оперение самолёта У этого термина существуют и другие значения, см. Оперение (значения). Оперение (оперение летательного аппарата … Википедия

    - (устаревшее аэроплан) летательный аппарат тяжелее воздуха для полётов в атмосфере с помощью двигателей и неподвижных, как правило, крыльев. Благодаря большой скорости, грузоподъёмности и радиусу действия, надёжности в эксплуатации,… … Большая советская энциклопедия

    Я; ср. 1. к Оперить и Опериться. Период оперения птенцов. 2. Перьевой покров птицы. Летнее о. Яркое о. самцов. Сменить своё о. 3. Специальное приспособление в оснастке летательных аппаратов, снарядов и т.п., обеспечивающее их устойчивость в… … Энциклопедический словарь

    Летательный аппарат тяжелее воздуха с крылом, на котором при движении образуется аэродинамическая подъёмная сила, и силовой установкой, создающей тягу для полёта в атмосфере. Основные части самолёта: крыло (одно или два), фюзеляж, оперение, шасси … Энциклопедия техники

    - («Воздухолетательный снаряд») Самолёт Можайского, рисунок из книги В. Д. Спицина «Воздухоплаван … Википедия

    Аэродинамические поверхности летательного аппарата, обеспечивающие его устойчивость и управляемость. О. самолёта обычно состоит из горизонтального оперения (ГО) и вертикального оперения (ВО), располагаемых чаще всего на хвостовой части фюзеляжа… … Энциклопедия техники

Оперение составляют несущие поверхности, предназначенные для обеспечения продольной и путевой устойчивости и управляемости самолета. Оно состоит обычно из горизонтального и вертикального оперений (рис. 3.1). Горизонтальное оперение (ГО) служит для продольной устойчивости и управляемости самолета, вертикальное оперение (ВО) - для путевой устойчивости и управляемости самолета.

Горизонтальное оперение состоит из стабилизатора и руля высоты (РВ). Стабилизатор является обычно неподвижной частью ГО, он совместно с РВ обеспечивает продольную устойчивость самолета в полете. Руль высоты - подвижная часть горизонтального оперения, предназначенная для управления самолетом относительно поперечной оси. Вертикальное оперение состоит из киля и руля направления (РН). Киль - неподвижная часть ВО - совместно с РН обеспечивает путевую и поперечную устойчивость самолета в полете. Руль направления является подвижной частью вертикального оперения, предназначенной для управления самолетом относительно вертикальной оси.

Схемы оперения различаются в основном в зависимости от взаимного расположения ГО и ВО и их расположения относительно фюзеляжа. В традиционной схеме ГО и ВО крепятся на хвостовой части фюзеляжа. Такая схема оперения наиболее выгодна в отношении массы и вибропрочности, но не всегда приемлема. Так, при верхнем расположении крыла или расположении двигателей на хвостовой части фюзеляжа применяют Т-образное оперение. В этой схеме ГО крепится на киле с целью выноса его из скошенного потока за крылом и струи газов двигателей. На некоторых самолетах с этой целью вместо Т-образного применяют V-образное оперение.

Рис.3.1. Оперение и элероны самолета:

1, 5 - элероны; 2 - триммер элеронов; 3, 4 - сервокомпенсаторы элеронов;

6, 12 -рули высоты; 7, 11 - триммеры руля высоты; 8 - руль направления;

9, 10 - триммер и пружинный сервокомпенсатор руля направления

Достаточно часто кили устанавливают на концах стабилизатора. Такое разнесенное ВО повышает эффективность и уменьшает индуктивное сопротивление ГО, поскольку кили выполняют в этом случае роль концевых шайб. Разнесенное ВО особенно выгодно для самолетов с турбовинтовыми двигателями, так как струи воздуха от воздушных винтов увеличивают эффективность ВО на малых скоростях полета. Кроме того, у разнесенного ВО центр давления ниже, чем у ВО обычной схемы, следовательно, меньше крутящий момент фюзеляжа. Недостатками Т-образного оперения и оперения с разнесенным ВО является необходимость усиления киля и стабилизатора, а следовательно, увеличения массы оперения, а также необходимость усложнения проводки управления рулями.



На самолетах типа "утка" ГО располагается впереди крыла. Такая схема ухудшает обзор из кабины экипажа, однако обеспечивает более высокие несущие свойства в сравнении с самолетами обычной схемы, поскольку уравновешивающая аэродинамическая сила на ГО направлена вверх, а не вниз.

Самолеты типа "бесхвостка" могут не иметь горизонтального оперения. В такой схеме продольная устойчивость обеспечивается применением

S-образного профиля и соответствующими очертаниями крыла в плане. Функции руля высоты выполняют элевоны, которые действуют в качестве элеронов и руля высоты. Отказ от ГО в схеме "бесхвостка" позволяет уменьшить лобовое сопротивление и массу самолета. Недостатком схемы является уменьшение несущих способностей крыла из-за необходимости применения S-образного профиля и элевонов, отклоняемых вверх в процессе продольной балансировки самолета.

Геометрические характеристики оперения - форма профиля, форма в плане, угол поперечного V - аналогичны характеристикам крыла. Кроме того, оперение характеризуется относительными площадями горизонтального и вертикального оперений, руля высоты и руля направления.

Оперение обычно имеет симметричные профили, что позволяет сохранить одинаковый характер аэродинамических нагрузок при отклонении рулей в разные стороны и обеспечить меньшее лобовое сопротивление. Для стабилизатора иногда применяется несимметричный профиль, установленный в перевернутом положении (обратной кривизны). Такой профиль создает при нулевом угле атаки ГО аэродинамическую силу, направленную вниз и уравновешивающую момент подъемной силы крыла при минимальном балансировочном сопротивлении самолета.



Профили оперения выбираются такими, чтобы срыв потока и скачки уплотнения возникали на оперение позже, чем на крыле. Этим достигается сохранение устойчивости и управляемости самолета на всех режимах полета. С этой же целью оперению придают стреловидность на 5 - 10° больше стреловидности крыла.

Относительные площади горизонтального и вертикального оперений S ГО и S ВО выражаются отношением площадей ГО и ВО к площади крыла:

S ГО = S ГO /S; S BO = S BO /S.

Относительная площадь руля высоты S B выражается отношением площади РВ S B площади ГО, а относительная площадь руля направления S H - отношением площади РН к площади ВО:

S В =S В /S ГО; S Н = S Н /S ВО

Нагрузки, действующие на оперение в полете, по характеру аналогичны нагрузкам, действующим на крыло. Массовые нагрузки от конструкции ГО и ВО невелики и в расчетах обычно не учитываются. Расчет на прочность и жесткость ведется на уравновешивающие и маневренные нагрузки, а также нагрузки при полете в неспокойном воздухе.

Уравновешивающая аэродинамическая сила на горизонтальном оперении Y ГО уравновешивает момент, создаваемый подъемной силой крыла Y относительно ЦМ самолета:

Y ГО L ГО =Ya, где L ГO - плечо горизонтального оперения, т. е. длина проекции на продольную ось самолета отрезка, соединяющего заданную точку на САХ крыла (обычно в диапазоне центровок самолета) с точкой, лежащей на 1/4 САХ горизонтального оперения.

Маневренные нагрузки возникают при резком отклонении руля и зависят от темпа его отклонения. При полете в неспокойном воздухе на ГО действуют нагрузки от порывов ветра. Эти нагрузки пропорциональны скорости потока при порыве и площади ГО.

На ВО уравновешивающая нагрузка возникает при скольжении самолета. Она достигает больших значений при отказе двигателя, находящегося на удалении от продольной оси самолета.

При отклонении рулей стабилизатор и киль дополнительно нагружаются сосредоточенными силами с рулей через узлы подвески. Направление этих сил зависит от направления отклонения рулей.

Нагрузки на оперение, как и на крыле, определяются для ряда расчетных случаев.

К рулевым поверхностям, кроме РВ и РН, относятся элероны - подвижные части крыла, отклоняемые одновременно в противоположные стороны (вверх и вниз), предназначенные для управления самолетом относительно его продольной оси.

Под устойчивостью понимают способность ВС самостоятельно, без участия пилота, сохранять заданное состояние движения и возвращаться к исходному режиму полета после непроизвольного отклонения, вызванного действием внешних возмущений.

Под управляемостью ВС понимают его способность изменять режим полета при отклонении рулевых поверхностей. Устойчивость и управляемость относятся к наиболее важным свойствам ВС, от них зависят безопасность полета, простота и точность пилотирования.

Посредством рулей и элеронов обеспечивается балансировка самолета, т. е. уравновешивание действующих на него сил и моментов. Достигается балансировка отклонением рулевых поверхностей на определенный, так называемый балансировочный угол.

В нормальных условиях полета пилот (автопилот) периодически балансирует самолет рулем высоты в связи с изменением центровки, вызванной выработкой топлива или перемещением пассажиров и грузов. В случае отказа двигателя, неравномерной выработки топлива из левой и правой половин крыла и в некоторых других случаях балансировка самолета достигается отклонением руля направления и элеронов.

Балансировочное положение рулевых поверхностей желательно иметь близким к их нейтральному положению. В противном случае существенно увеличивается лобовое сопротивление самолета. Так, балансировочные потери от отклонения руля высоты могут сократить дальность полета самолета более чем на 10%.

Таким образом, рули и элероны выполняют две функции: обеспечивают равновесие действующих на самолет сил и моментов при полете в установившемся режиме и служат для управления, т.е. преднамеренного нарушения этого равновесия с целью изменения режима и траектории полета.

На вертолетах функции оперения выполняют несущие и рулевые винты, но часто в качестве вспомогательных устройств применяется оперение самолетного типа.

Двухвинтовой вертолет соосной схемы снабжается килем и рулем направления, которые улучшают путевую устойчивость и управляемость вертолета; РН, кроме того, повышает путевую управляемость на режиме самовращения несущего винта.

На одновинтовых вертолетах роль киля выполняет концевая балка, сечениям которой придается форма несимметричного профиля. Такая килевая балка повышает путевую устойчивость вертолета и разгружает в горизонтальном полете рулевой винт. Руль направления на одновинтовых вертолетах не применяется, поскольку достаточная путевая управляемость достигается посредством рулевого винта.

Горизонтальное оперение состоит обычно из управляемого стабилизатора, предназначенного для повышения продольной устойчивости вертолета. Стабилизаторы могут предусматриваться на вертолетах различных схем. Управление стабилизатором осуществляется через систему управления несущим винтом. Некоторые вертолеты имеют неуправляемые стабилизаторы.

Конструкция оперения вертолетов аналогична конструкции оперения самолетов. Поскольку вертолеты имеют относительно небольшие скорости полета, обшивка оперения может быть полотняной.

© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары