Вконтакте Facebook Twitter Лента RSS

Бактериальная клетка размножается путем. Какие способы размножения характерны для бактерий? Важнейшие бактериальные факторы роста

На заключительной стадии деления клеточная оболочка сжимается и разрушается или участвует в синтезе септы с последующим автолизом, образуя две отдельных клетки

Процесс деления у бактерий контролируется гомологом тубулина, белком FtsZ, который образует кольцевую структуру в месте деления

Вместе с FtsZ, в месте деления образуется набор, состоящий примерно из 8 белков, участвующих в делении

Место деления клетки определяется двумя системами отрицательной регуляции: блокирующим эффектом нуклеоида и системой Min

Большинство клеток эукариот делятся точно посередине, образуя две одинаковые дочерние клетки. Деление скоординировано с завершением репликации и сегрегацией хромосом. Обычно деление происходит по завершению периода роста, во время которого масса клеток удваивается. После сегрегации хромосом наступает цитокинез, в результате которого клетка разделяется на две. Во время цитокинеза все слои клеточной мембраны локально принимают кольцеобразную форму. Как показано на рисунке ниже, цитокинез осуществляется, по крайней мере, двумя различными путями.

У грамотрицательных микроорганизмов , таких как Е. coli, деление происходит при сокращении слоев существующей оболочки, с последующим разрывом образующейся перемычки. У других бактерий, например у грамположительных В. subtilis, новообразованные кольцевые структуры материала клеточной стенки растут внутрь клетки, образуя перегородку. Когда образование перегородки завершилось, между сестринскими клетками образуется двойная мембрана, но клетки остаются связанными друг с другом. Разделение клеток представляет собой самостоятельное событие, которое включает в себя автолиз материала перегородки. В зависимости от условий роста, автолиз перегородки может происходить достаточно медленно и сопровождаться возникновением длинных цепей связанных между собой клеток.

При выделении и характеристике мутантов fis (филаментарные температурочувствительные мутации) был идентифицирован ряд генов, необходимых для деления. Клетки мутантов fis при непермиссивной температуре растут в виде длинных неделящихся филаментов. У большинства бактерий обнаружено около 8 генов fis. Плодотворным оказалось наблюдение Люткенхауза, который обнаружил, что белок FtsZ образует кольцеобразные структуры непосредственно под клеточной мембраной на месте деления. Затем к этому «Z-кольцу» в определенном порядке подходят остальные белки деления. Этот процесс для клеток Е. coli представлен на рисунке ниже. Функции большинства этих белков неизвестны.

Ключевой белок деления, FtsZ , представляет собой гомолог тубулина эукариот, белка, входящего в состав цитоскелета и формирующего микротрубочки. Подобно тубулину, этот белок является ГТФазой и в присутствии ГТФ полимеризуется с образованием линейных прото-филаментов, in vitro формирующих пучки и плоские структуры. Кольцевая структура белка FtsZ крайне динамична, и in vivo постоянно подвергается переформированию (с полупериодом <10 с!). В этом отношении белок напоминает тубулин эукариот.

У прокариот деление происходит либо путем образования перетяжки, либо с помощью перегородки.
Для простоты, капсульный слой клеточной оболочки не показан.

В Z-кольце с белком FtsZ непосредственно взаимодействует белок FtsA, функция которого, вероятно, состоит в стабилизации кольца. Белок FtsA напоминает актин клеток эукариот, однако обладает дополнительным доменом, функции которого неизвестны. Этот белок образует димеры, но, по-видимому, не полимеризуется. Хотя он не участвует в формировании Z-кольца, клетки двойного мутанта, дефектного по белкам FtsA и ZipA, не способны образовывать кольцевые структуры. Таким образом, функции белков FtsA и ZipA частично перекрываются, и, по крайней мере, один из них необходим для стабилизации Z-кольца. Также показано, что белок ZipA непосредственно взаимодействует с FtsZ и, в отличие от последнего и FtsA, представляет собой трансмембранный белок. Поэтому ZipA может обеспечивать сопряжение Z-кольца с клеточной мембраной.

Остальные белки деления представляют собой трансмембранные белки. Функции белков FtsL и FtsQ неизвестны. Белок FtsW, вероятно, поставляет предшественники для белка FtsI, который является ферментом, участвующим в синтезе перегородки. Последний обладает способностью связывать пенициллин и взаимодействует с аппаратом синтеза клеточной стенки, функционирующим при делении. Белки FtsK и FtsN необходимы для деления клеток Е. coli, однако у B. subtilis гомолог белка FtsK (SpoIIIE) не участвует в делении, а гомолог белка FtsN у этих клеток отсутствует.

Между двумя хорошо изученными микроорганизмами , Е. coli и В. subtilis, существуют интересные различия в процессе сборки белков деления. Так, у E. coli этот процесс носит почти линейный характер, в то время как у В. subtilis сборка белков на Z-кольцевой структуре является взаимозависимой. Эти различия, вероятно, отражают различную организацию клеточной оболочки у грамотрицательных и грамположительных микроорганизмов. Пока мы мало знаем о том, каким образом полностью собранный аппарат деления влияет на цитокинез, и выяснение этих вопросов представляет собой обширное поле деятельности для исследователей.

Деление контролируется, главным образом, на уровне образования кольца FtsZ. Предполагают, что положение сайта деления, и, вероятно, протекание этого процесса во времени находятся под контролем двух факторов: блокирования нуклеоидом и системы Min. Оба этих фактора обеспечивают наступление деления только после завершения репликации ДНК, а также одинаковую величину образующихся клеток.

Фактор блокирования нуклеоидом исследован недостаточно. Он проявляется в том, что из-за своего объема нуклеоид может предотвращать деление. Поэтому деление клетки происходит только после завершения раунда репликации ДНК и расхождения сестринских хромосом с образованием отдельных нуклеоидов. При блокировании процессов репликации или сегрегации, присутствие нуклеоида в середине клетки предотвращает образование перегородки. В принципе отрицательный эффект нуклеоида может объясняться просто отсутствием в этой области исключением из его состава белка FtsZ. При этом белок не накапливается до критической концентрации, необходимой для его полимеризации.

Значимость фактора блокирования нуклеоидом для клетки представляет собой потенциальную проблему, которая заключается в том, что полюса клетки (по крайней мере у палочковидных бактерий) не защищены нуклеоидом, и поэтому возможно наступление аберрантного полярного деления. Для предупреждения этого, у многих бактерий присутствуют белки, входящие в систему Min, которая препятствует делению на полюсах.Название этой системы происходит от названия мини-клеток, образуемых мини-мутантами, для которых характерно деление на полюсах.

Ключевой эффектор системы Min представляет собой ингибитор клеточного деления, который называется MinC. Этот белок обладает способностью ингибировать образование Z-кольца, вероятно, непосредственно ингибируя полимеризацию FtsZ. Активность MinC находится под контролем белка MinD. Вероятно, этот белок контролирует внутриклеточную локализацию MinC по двум различным механизмам. Один из них состоит в том, что MinD транспортирует MinC на периферию клетки (ближе к цитоплазматической мембране) туда, где происходит сборка кольцевой структуры FtsZ. Второй механизм заключается в том, что MinD ограничивает активность MinC полюсами клетки, тем самым предотвращая наступление полярного деления, но способствуя делению клетки по средней линии.

У многих палочковидных бактерий система MiniCD используется для контроля за местонахождением сайта деления. Эта система хорошо охарактеризована у бактерий Е. coli и В. subtilis. Интересно, что у двух этих микроорганизмов существуют совершенно разные механизмы, посредством которых MinD ограничивает эффект MinC на полюса клетки. У В. subtilis используется простой механизм, при котором полярный якорный белок DivIVA транспортирует комплекс MinCD к полюсам клетки и в течение всего клеточного цикла удерживает его там в статичном положении. Как показано на рисунке ниже, DivIVA и MinD локализуются у полюсов вновь образованной клетки, и присутствие ингибитора MiniC предотвращает формирование FtsZ-кольца у полюсов.

По-видимому, после завершения репликации ДНК , в середине клетки создается новый потенциальный сайт деления. Концентрация ингибитора MiniC у полюсов позволяет провести сборку FtsZ-кольца в середине клетки и обеспечивает мобилизацию других белков деления. В этот момент аппарат деления, вероятно, становится нечувствительным к ингибирующему действию MinC Затем белки DivIVA и MinD перемещаются на середину клетки. Поэтому, когда при делении образуется новая пара клеточных полюсов, DivIVA встраивается в новые полюса и образует новую область проявления ингибирующего эффекта MinCD. Когда произошло сокращение оболочки, наступает разборка FtsZ-кольца, однако DivIVA и MinCD остаются на вновь образованных полюсах, тем самым предотвращая деление на этих полярных сайтах.

Таким образом, транспортировка DivIVA к сайту деления и затем его удержание на полюсах клетки являются ключевыми событиями этого механизма.

Интересно, что белок DivIVA локализуется на сайтах деления, когда он экспрессируется в эукариотических клетках (делящиеся дрожжи). Эта позволяет предполагать, что DivIVA может узнавать топологические характеристики, например кривизну мембраны, а не специфические белковые мишени.

В противоположность этому, в клетках Е. coli существует динамическая система MinCD, которая на какое-то время собирает комплекс у одного полюса. Затем он разбирается и собирается вновь у противоположного полюса. Так повторяется много раз. Этим процессом управляет кольцо белка MinE, которое, в свою очередь, каждый раз перемещается к тому или иному полюсу, смещая MinCD и обеспечивая ему возможность собраться у противоположного полюса. Изменение локализации MinCD от одного полюса к другому происходит с частотой порядка десятков секунд. Как показано на рисунке ниже, MinD поочередно накапливается на периферии мембраны с каждой стороны кольца MinE. Быстрое изменение локализации MinD не позволяет кольцу FtsZ собраться на полюсах.

Присутствие MinE в центральной области исключает проявление там ингибирующего эффекта MinD и дает возможность собраться в этом месте кольцу FtsZ. Остается невыясненным, почему для контроля MinCD и установления полюсов у Е. coli выработался такой энергетически невыгодный механизм.

MinD относится к интересной группе белков, обладающих общей функцией связывания нуклеотидов, которая также включает белок разделения хромосом, ParA. Близкий к ParA белок, Soj, также проявляет динамические свойства. Вероятно, общей для этих белков является их способность связывать и гидролизовать нуклеотиды и контролировать реакции полимеризации и деполимеризации. Это напоминает механизм контроля динамической нестабильности актиновых филаментов и микротрубочек у эукариот. Поэтому эти белки относятся еще к одному классу белков цитоскелета бактерий, обладающих широкими функциями, которые особенно связаны с вопросами морфогенеза на разных стадях клеточного цикла.

Недавно у грамположительных бактерий был идентифицирован белок, участвующий в блокировании клеточного деления нуклеоидом. Это Noc, представляющий собой белок, неспецифически связывающийся с ДНК, который локализован в нуклеоиде. Он также является ингибитором клеточного деления. Если не нарушена репликация хромосом, то мутанты noc растут нормальным образом. При этом в noc- клетках деление происходит с участием нуклеоида, а клетки дикого типа не делятся. Как показано на рисунке ниже, Noc и система MiniCD определяют местоположение кольца FtsZ в середине клетки. В клетках дикого типа, DivIVA запускает процесс полимеризации белка MinD, который распространяется от полюсов к середине клетки вдоль мембраны.

Белок MinC , связанный с белком MinD , предотвращает накопление FtsZ или полимеризацию поблизости от полюсов клетки. Предполагается, что белок Noc связывается с нуклеоидом и ингибирует накопление FtsZ или проявление его активности поблизости от нуклеоида. В клетках noc-, система Min предотвращает сборку кольца FtsZ, исключая область середины клетки, и клетки растут нормально. Однако у min- клеток Noc ингибирует сборку FtsZ только вокруг нуклеоида, и FtsZ образует кольцевую структуру в середине клетки и на полюсах, где нет нуклеоида. У клеток с отсутствующими топологическими ингибиторами (двойные мутанты min-noc-) сборке FtsZ ничего не препятствует, и по всей клетке образуются многочисленные вкрапления, состоящие из этого белка. Их образование приводит к утрате клеткой способности к делению. У грамотрицательных бактерий Noc отсутствует, однако у Е. coli обнаружен белок, контролирующий систему блокирования деления нуклеоидом по механизму, аналогичному Noc.


Скорость роста бактерий зависит как от внешних условий, так и от физиологических особенностей самой клетки. При наличии благоприятных условий рост бактериальной клетки завершается размножением. Основным способом размножения большинства бактерий является простое деление клетки пополам. Делению предшествует репликация (удвоение) хромосомы. Эти два процесса тесно взаимосвязаны. Частота репликации регулируется скоростью роста клетки. Репликация бактериальной хромосомы осуществляется описанным ранее способом (см. п. 3.2.5).
Изучение закономерности равномерного распределения генетического материала между дочерними клетками, образовавшимися в результате деления материнской клетки, позволило Г. Жакобу, С. Бреннеру и Т. Кузену (1963) сформулировать концепцию репликона. Репликон - единица репликации, это участок ДНК, содержащий регуляторные элементы, необходимые для независимой репликации. У бактерий таковым являются хромосома и плазмиды. Каждый репликон содержит не менее двух локусов, участвующих в контроле репликации: структурный ген-репликатор (ген-инициатор), детерминирующий синтез белка-инициатора и специальный сайт-репликатор, который распознает сигналы на начало удвоения хромосомы.
После некоторого периода роста клетка достигает определенного физиологического состояния. Из цитоплазматической мембраны в репликон поступают сигналы о необходимости репликации хромосомы и готовности клетки к делению. Под влиянием сигналов активизируется деятельность структурного гена и синтезируется белок-инициатор. Он, воздействуя на репликатор, запускает репликацию.
Между системой репликации хромосомы и делением клетки существует координированное взаимодействие: делению клетки всегда предшествует удвоение хромосомы. После завершения репликации начинается процесс деления клетки. У грамположительных бактерий и цианобактерий это осуществляется образованием поперечной перегородки, разделяющей материнскую клетку на две равноценные дочерние.
Деление происходит следующим образом. Вначале
синтезируется двуслойная цитоплазматическая мембрана. Затем на внутренней стороне клеточной стенки образуются два бугорка. Они интенсивно растут и, проникая кольцеобразно внутрь клетки между слоями образовавшейся цитоплазматической мембраны, образуют двойную перегородку, делящую клетку пополам.
Деление большинства грамотр тщательных бактерий
происходит путем перетяжки. При этом геномы расходятся по полюсам клетки, цитоплазматическая мембрана и клеточная стенка растягиваются, впячиваясь от периферии к центру клетки до контакта друг с другом. В результате клетка перешнуровывается на две дочерние. Деление клеток образованием перегородки или перетяжкой получило название бинарного в связи с формированием двух одинаковых дочерних клеток.
Кроме описанного бинарного деления, у бактерий известен другой способ размножения * почкование. Почкованием размножаются бактерии родов Hyphomicrobium, Pedomicrobium и других, объединенных в группу почкующихся бактерий. Эти организмы имеют вид вытянутых палочек (0,5х 2 мкм), иногда грушевидных, оканчивающихся гифами, или простеками (выростами).
Размножение у этих бактерий начинается с образования почки на конце гифы или непосредственно на материнской клетке. Почка разрастается в дочернюю клетку, формирует жгутик и отделяется от материнской клетки. По достижению зрелого состояния жгутик теряется и процесс развития повторяется.
В отличие от бинарного деления при почковании исходная клетка остается материнской, а вновь образованная - дочерней. Между ними имеются морфологические и физиологические различия.
Актиномицеты размножаются фрагментами мицелия и спорами. У одних (род Micromonospora) единичные споры формируются на гифах вегетативного мицелия, у других (род Streptomyces и др.) цепочки спор образуются на концах гиф воздушного мицелия, так называемых конидиеносцах. Фрагменты мицелия и споры в благоприятных условиях влажности, температуры прорастают и дают начало новым организмам.
Нитчатые цианобактерии кроме бинарного деления размножаются участками трихом и гормогониями. Последние представляют собой укороченные нити, состоящие из мелких вегетативных клеток одинаковой формы и размеров. При отмирании средних клеток трихома (нити) гормогонии выскальзывают из чехла материнского трихома, растут, делятся, образуя новые трихомы. Гормогонии, в отличие от материнского трихома, не имеют гетероцист и никогда не окружены чехлом.
Независимо от того, каким путем идет процесс размножения бактерий, скорость этого процесса огромна: за 24 ч может смениться столько поколений, сколько у человека за пять тысяч лет. Скорость размножения зависит от многих условий и для каждого вида бактерий различна. При наличии в среде необходимых питательных веществ, благоприятной температуры и кислотности среды деление каждой клетки может повторяться через 20-30 мин (Е. coli). При такой скорости размножения из одной клетки за сутки возможно образование 472 * 1019 клеток (273, 72 генерации).
Интенсивное размножение имеет для бактерий большое биологическое значение. Оно обеспечивает сохранение микроорганизмов на земной поверхности. При наступлении неблагоприятных условий они погибают массами, но достаточно сохраниться где-нибудь нескольким клеткам, как при подходящих условиях они дадут большое потомство клеток.
Численность популяции микроорганизмов в естественных местообитаниях, например, в почве или воде, постоянно меняется в соответствии с изменением условий существования. Но в лабораторных условиях на питательных средах изменение численности популяции микроорганизмов происходит закономерным образом.

  • 9. Характеристика эукариотических микроскопических организмов. Отличительные черты простейших, вызывающих инфекционные заболевания.
  • 10. Морфология бактерий. Разнообразие форм. Размеры микроорганизмов. Методы изучения морфологии бактерий. Виды микроскопов.
  • 11. Морфология бактерий. Химический состав бактериальной клетки.
  • 12. Морфология бактерий. Строение и химический состав внешних слоев. Капсула, слизистые слои, чехлы.
  • 13. Морфология бактерий. Клеточная стенка грамположительных и грамотрицательных бактерий. Окраска по Граму.
  • 14. Морфология бактерий. Явление l-трансформации. Биологическая роль.
  • 15. Морфология бактерий. Бактериальная мембрана. Строение мезосом, рибосом. Химический состав цитоплазмы.
  • 16. Морфология бактерий. Запасные включения бактериальной клетки.
  • 17. Движение бактерий. Строение жгутика, толщина, длина, химический состав. Приготовление фиксированных препара-тов и препаратов живых клеток микроорганизмов.
  • 18. Движение бактерий. Виды расположения жгутиков. Функции фимбрий и пилей.
  • 19. Движение бактерий. Характер движения бактериальной клетки. Виды таксисов.
  • 20. Бактериальное ядро. Строение, состав. Характеристика днк.
  • 21. Бактериальное ядро. Особенности генетической системы бактерии. Типы репликации днк бактерии.
  • 22. Бактериальное ядро. Виды деления бактериальной клетки. Процесс деления.
  • 23. Бактериальное ядро. Формы обмена генетической информацией у бактерий. Изменчивость бактерий.
  • 24. Бактериальное ядро. Плазмиды. Биологическая роль, отличия от вирусов, виды плазмид.
  • 25. Морфологическая дифференцировка прокариот. Формы клеток. Покоящиеся формы. Процесс поддержания состояния покоя.
  • 26. Морфологическая дифференцировка прокариот. Строение эндоспоры. Химический состав, слои.
  • 27. Морфологическая дифференцировка прокариот. Биохимические и физиологические изменения в процессе прорастания эндоспроры. Факторы устойчивости эндоспор в окружающей среде.
  • 28. Морфологическая дифференцировка прокариот. Формирование споры, слои эндоспоры.
  • 29. Классификация и систематика бактерий. Классификация бактерий по Берджи. Признаки, используемые при описании бактерий. Характеристика основных групп бактерий по классификатору Берджи.
  • 30. Классификация и систематика бактерий. Категории бактерий. Особенности эубактерий и архебактерий.
  • 31. Влияние физических факторов на микроорганизмы. Отношение микроорганизмов к молекулярному кислороду. Аэробы, анаэробы, микроаэрофилы.
  • 32. Влияние физических факторов на микроорганизмы. Температура. Способность к росту при различных температурных условиях.
  • 33. Влияние физических факторов на микроорганизмы. Температура. Способность к выживанию в экстремальных температурных условиях.
  • 34. Влияние физических факторов на микроорганизмы. Влажность.
  • 35. Влияние физических факторов на микроорганизмы. Давление. Осмотическое давление. Атмосферное. Гидростатическое давление и вакуум.
  • 36. Влияние физических факторов на микроорганизмы. Лучистая энергия, уфл, ультразвук.
  • 37. Влияние химических факторов на микроорганизмы. Кислотность и щелочность. Поваренная соль.
  • 38. Влияние химических факторов на микроорганизмы. Антисептики, виды и воздействие на микроорганизмы.
  • 39. Влияние биологических факторов на микроорганизмы. Антибиоз. Виды взаимоотношений – антагонизм, паразитизм, бактериофаги.
  • 40. Влияние биологических факторов на микроорганизмы. Взаимоотношения бактерий с другими организмами. Симбиоз. Виды и примеры симбиоза.
  • 41. Принципы консервирования пищевых продуктов, основанные на методах воздействия на бактерии различных факторов внешней среды. Влияние антибиотиков.
  • 42. Питание микроорганизмов. Ферменты микроорганизмов. Классы и виды ферментов. Пути катаболизма.
  • 43. Питание микроорганизмов. Механизмы транспорта питательных веществ в клетку. Пермеазы, ионофиоры. Характеристика процессов симпорта и антипорта. Транспорт железа.
  • 45. Питание микроорганизмов. Гетеротрофные микроорганизмы. Различная степень гетеротрофности.
  • 50. Метаболизм бактерий. Брожение. Виды брожения. Микроорганизмы, вызывающие эти процессы
  • 51. Метаболизм бактерий. Фотосинтез. Виды фотосинтезирующих бактерий. Фотосинтетический аппарат.
  • 53. Метаболизм бактерий. Хемосинтез. Происхождение кислородного дыхания. Токсический эффект воздействия кислорода.
  • 54. Метаболизм бактерий. Хемосинтез. Дыхательный аппарат клетки. Метаболизм бактерий. Хемосинтез. Энергетический обмен микроорганизмов.
  • 56. Биосинтетические процессы. Ассимиляция различных веществ.
  • 57. Биосинтетические процессы. Образование вторичных метаболитов. Виды антибиотиков. Механизм действия.
  • 58. Биосинтетические процессы. Образование вторичных метаболитов. Токсинообразование. Виды токсинов.
  • 59. Биосинтетические процессы. Образование вторичных метаболитов. Витамины, сахара, ферменты.
  • 60. Регуляция метаболизма. Уровни регуляции метаболизма. Индукция. Репрессия.
  • 62. Основы экологии микроорганизмов. Экология микробных сообществ.
  • 63. Основы экологии микроорганизмов. Микроорганизмы воздуха.
  • 64. Основы экологии микроорганизмов. Микроорганизмы морских водных экосистем.
  • 65. Основы экологии микроорганизмов. Микроорганизмы солоноватых водных экосистем.
  • 66. Основы экологии микроорганизмов. Микроорганизмы пресноводных экосистем.
  • 67. Основы экологии микроорганизмов. Микроорганизмы почвенных экосистем.
  • 68. Основы экологии микроорганизмов. Микроорганизмы почв. Микориза.
  • 69. Основы экологии микроорганизмов. Круговорот углерода, водорода и кислорода.
  • 70. Основы экологии микроорганизмов. Круговорот азота, фосфора и серы.
  • 71. Основы экологии микроорганизмов. Симбионты организма человека. Пищеварительный тракт. Ротовая полость. Бактериальные заболевания.
  • 72. Основы экологии микроорганизмов. Симбионты организма человека. Пищеварительный тракт. Проблема дисбактериоза.
  • 73. Основы экологии микроорганизмов. Симбионты организма человека. Дыхательные пути, выделительная, половая система.
  • 74. Основы экологии микроорганизмов. Симбионты организма человека. Кожа, конъюктива глаза, ухо.
  • 75. Инфекция. Патогенные микроорганизмы. Их свойства. Вирулентность микроорганизмов.
  • 76. Инфекция. Инфекционный процесс. Виды инфекций. Формы инфекций. Локализация возбудителя. Входные ворота.
  • 79. Инфекция. Роль макроорганизма в развитии инфекционного процесса.
  • 81. Классификация инфекций. Особо опасные инфекции. Кишечные инфекции, аэрогенные инфекции, детские инфекции.
  • 82. Пищевые отравления и токсикоинфекции. Причины возникновения. Основные клинические симптомы.
  • 83. Пищевые токсикоинфекции. Возбудитель – бактерии рода Salmonella.
  • 84. Пищевые токсикоинфекции. Возбудитель – бактерии рода Escherichium и Shigella.
  • 85. Пищевые токсикоинфекции. Возбудитель – бактерии рода Proteus.
  • 86. Пищевые токсикоинфекции. Возбудитель – бактерии рода Vibrio.
  • 87. Пищевые токсикоинфекции. Возбудитель – бактерии рода Bacillus и Clostridium.
  • 88. Пищевые токсикоинфекции. Возбудитель – бактерии рода Enterococcus и Streptococcus.
  • 89. Пищевые токсикозы. Возбудитель – бактерии рода Clostridium.
  • 90. Пищевые токсикозы. Возбудитель – бактерии рода Staphylococcus.
  • 22. Бактериальное ядро. Виды деления бактериальной клетки. Процесс деления.

    Виды деления:

    1. Равновеликое бинарное поперечное деление , приводящее к образованию двух одинаковых дочерних клеток. При таком способе деления имеет место симметрия в отношении продольной и поперечной оси. При равновеликом бинарном делении материнская клетка, делясь, дает начало двум дочерним клеткам и сама, таким образом, исчезает.

    2. Неравновеликое бинарное деление, или почкование . При почковании на одном из полюсов материнской клетки образуется маленький вырост (почка), увеличивающийся в процессе роста. Постепенно почка достигает размеров материнской клетки, после чего отделяется от последней. Клеточная стенка почки полностью синтезируется заново. В процессе почкования симметрия наблюдается в отношении только продольной оси. При почковании материнская клетка дает начало дочерней клетке, и между ними можно в большинстве случаев обнаружить морфологические и физиологические различия: есть старая материнская клетка и новая дочерняя.

    3. Размножение путем множественного деления , характерное для одной группы одноклеточных цианобактерий, в результате образуются мелкие клетки, получивших название баеоцитов (греч. bae – маленькая, cyto – клетка), число которых у разных видов колеблется от 4 до 1000. Освобождение баеоцитов происходит путем разрыва материнской клеточной стенки. В основе множественного деления лежит принцип равновеликого бинарного деления. Отличие заключается в том, что в этом случае после бинарного деления не происходит роста образовавшихся дочерних клеток, а они снова подвергаются делению.

    23. Бактериальное ядро. Формы обмена генетической информацией у бактерий. Изменчивость бактерий.

    Формы обмена генетическим материалом у бактерий:

    1. по горизонтали

    * трансформация – перенос генетического материала, заключающийся в том, что бактерия-реципиент захватывает (поглощает) из внешней среды фрагменты чужеродной ДНК.

    А) Индуцированная (искусственно получаемая) трансформация происходит при добавлении к культуре бактерий очищенной ДНК, полученной из культур тех бактерий, генетические признаки которых стремятся передать исследуемой культуре.

    Б) Спонтанная трансформация происходит в естественных условиях и проявляется в возникновении рекомбинантов при смешивании генетически различающихся клеток. Она протекает за счет ДНК, выделяющейся клетками в окружающую среду вследствие их лизиса или в результате активного выделения ДНК жизнеспособными клетками-донорами.

    * сексдукция

    * трансфекция – вариант трансформации бактериальных клеток, лишенных клеточной стенки, осуществляемый вирусной (фаговой) нуклеиновой кислотой. С помощью трансфекции удается вызвать у таких бактерий (без клеточной стенки) вирусную инфекцию. Трансфекцию можно осуществить и с другими (не бактериальными) клетками, если ввести в них чужеродную ДНК, способную рекомбинировать с ДНК этих клеток, или воспроизводить вирионы, или самостоятельно реплицироваться.

    * конъюгация – процесс обмена генетическим материалом (хромосомным и плазмидным), осуществляемый при непосредственном контакте клеток донора и реципиента. Этот процесс контролируется только конъюгативными плазмидами, имеющими совокупность генов, называемую tra-опероном (tra – от англ., transfer – перенос).

    Этот оперон контролирует синтез аппарата переноса, конъюгативную репликацию и явление поверхностного исключения. Аппаратом переноса являются специальные донорные ворсинки, с помощью которых устанавливается контакт между конъюгирующими клетками. Донорные ворсинки представляют собой длинные (1-20 мкм) тонкие трубчатые структуры белковой природы с внутренним диаметром около 3 нм.

      установление контакта между донором и реципиентом

      протаскивание нити ДНК от донора к реципиенту

      достройка перенесенной нити ДНК комплементарной ей нитью в реципиентной клетке

      рекомбинация между переданной хромосомой (ее фрагментами) и хромосомой клетки-реципиента

      размножение мерозиготы

      образование клеток, несущих признаки донора и реципиента

    Конъюгативная репликация переносимой нити хромосомной или плазмидной ДНК осуществляется также под контролем плазмидных генов. Классическим примером конъюгативной плазмиды является половой фактор, или F-плазмида (от англ. fertility – плодовитость). F-плазмида может находиться как в автономном состоянии, так и интегрироваться в хромосому клетки. Находясь в автономном состоянии, она контролирует только собственный перенос, при котором Р~-клетка (клетка, лишенная F-плазмиды) превращается в Р+-клетку (клетку, содержащую F-плазмиду). F-плазмида может интегрироваться в определенные участки бактериальной хромосомы, в этом случае она станет контролировать конъюгативный перенос хромосомы клетки.

    Таким образом, конъюгация начинается с установления контакта между донором и реципиентом с помощью донорной ворсинки. Последняя смыкается с рецептором клеточной мембраны клетки-реципиента. Нередко такой контакт устанавливается не только между двумя клетками, а между многими клетками, образуя агрегаты спаривания. Предполагают, что нить ДНК в процессе конъюгации протаскивается через канал донорной ворсинки. Поскольку донорный мостик является непрочным, процесс конъюгации может в любой момент прерваться. Поэтому при конъюгации может переноситься или часть хромосомы, или, реже, – полная хромосома. С помощью F-плазмид частота переноса генов между бактериями существенно возрастает.

    * трансдукция - перенос генетического материала от клетки-донора клетке-реципиенту с помощью бактериофагов. Различают трансдукцию неспецифическую и специфическую.

    А) Неспецифическая трансдукция - случайный перенос фрагментов ДНК от одной бактериальной клетки к другой.

    Б) Специфическая трансдукция осуществляется только умеренными фагами, способными включаться в строго определенные участки хромосомы бактериальной клетки и переносить определенные гены.

    Молекулярные механизмы изменчивости бактерий

    Бактерии в силу относительной простоты их организации и короткого срока жизни подвергаются изменчивости быстрее, чем многие другие организмы. В основе их изменчивости лежат мутации и генетические рекомбинации, особенно протекающие с участием транспонируемых элементов.

    *Мутации – изменения в генотипе, которые стабильно наследуются. Мутации могут быть спонтанными или индуцированными.

    а) Спонтанные мутации возникают без каких-либо специальных воздействий, они происходят в результате ошибок при репликации и репарации. Средняя частота спонтанных мутаций составляет около 1 106 (один мутант на 1 млн. клеток).

    б) Индуцированные мутации происходят с гораздо большей частотой, они возникают в результате воздействия различных мутагенов – физических и химических факторов, повреждающих ДНК: ионизирующая радиация, УФ облучение, различные аналоги оснований ДНК, алкилирующие соединения, акридины, антибиотики

    в) Точечные мутации могут быть обусловлены: заменой оснований, выпадением (делецией) основания, появлением дополнительного основания (вставки). Точечные мутации могут иметь три последствия:

    1) замена одного кодона на другой, а стало быть, одной аминокислоты на другую;

    2) сдвиг рамки считывания, что приведет к изменению целой серии последовательностей аминокислотных остатков;

    3)возникновение «бессмысленного» кодона, что приведет к прекращению трансляции в данной точке

    синтез белка может быть полностью заблокирован. Будет синтезироваться измененный белок

    Все это приведет либо к утрате какого-то фенотипического признака у мутанта, либо, реже, к появлению у него нового признака.

    Нарушение генома может быть следствием:

    *протяженных делеций

    *инверсии (поворот сегмента хромосомы на 180°)

    *транслокации (перемещение участка хромосомы из одной позиции в другую)

    Все это также будет приводить к изменению и нарушению различных функций клетки (организма).

    Большая роль в изменчивости бактерий и других организмов принадлежит так называемым транспонируемым генетическим элементам, то есть генетическим структурам, способным в интактной форме перемещаться внутри данного генома или переходить от одного генома к другому, например от плазмидного генома к бактериальному и наоборот. Различают три класса транспонируемых элементов: IS-элементы, транспозоны и эписомы.

    #Вставочные последовательности (от англ, insertion sequence), имеют обычно размеры, не превышающие 2 тыс. пар оснований, или 2 к.б. (килобаза – тысяча пар оснований). IS-элементы несут только один ген, кодирующий белок транспозазу, с помощью которой IS-элементы встраиваются в различные участки хромосомы. Их обозначают цифрами: IS1, IS2, IS3 и т. д.

    #Транспозоны представляют собой более крупные сегменты ДНК, фланкированные инвертированными IS-элементами. Способны встраиваться в различные участки хромосомы или переходить из одного генома в другой, т. е. ведут себя как IS-элементы. Помимо генов, обеспечивающих их перемещение, они содержат и другие гены, например гены лекарственной устойчивости. Транспозоны обнаружены в геномах плазмид, вирусов, прокариот и эукариот и их, как и IS-элементы, обозначают порядковым номером: Tп1, Тп2, ТпЗ и т. д.

    # К эписомам относятся еще более крупные и сложные саморегулирующиеся системы, содержащие IS-элементы и транспозоны и способные реплицироваться в любом из двух своих альтернативных состояний – автономном или интегрированном – в хромосому клетки-хозяина. К эписомам относят различные умеренные лизогенные фаги; они отличаются от всех других транспонируемых элементов наличием собственной белковой оболочки и более сложным циклом репродукции. Собственно эписомы – это вирусы, обладающие, подобно другим транспонируемым элементам, способностью в интактной форме переходить из одного генома в другой.

    Страница 2

    Основной способ размножения бактерий - деление клетки надвое (бинарное деление). При этом плазматическая мембрана и стенка впячиваются и перешнуровывают ее пополам. Впячивание мембраны происходит между точками прикрепления двух дочерних кольцевых молекул ДНК, в результате чего дочерние клетки обеспечиваются копиями материнской хромосомы. Бактерии обладают способностью к образованию эндоспор. Некоторые эндоспоры имеют плотные многослойные оболочки, устойчивы по отношению к агрессивным факторам внешней среды и длительно сохраняют способность к прорастанию.

    Половой процесс у бактерий заключается в переносе ДНК от одной клетки к другой с последующей генетической рекомбинацией. Обмен наследственным материалом может происходить путем конъюгации (прямой контакт клеток), трансдукции (перенос ДНК вирусом-бактериофагом) или трансформации (поглощение фрагментов ДНК извне). Однако универсальным источником изменчивости являются мутации. В сочетании с темпом размножения бактерий они обеспечивают этим организмам высокую способность к адаптации к условиям внешней среды.

    Различные виды бактерий могут использовать в качестве источника энергии почти любые органические соединения - не только питательные вещества, как сахара, аминокислоты и жиры, но и продукты выделения, например мочевину и мочевую кислоту, содержащиеся в моче, и вещества, входящие в состав экскрементов. Один из видов бактерий может использовать в качестве питательного субстрата даже пенициллин, убивающий многие бактерии.

    Смотрите также

    Основные факторы водной среды и их влияние на организмы
    Введение На нашей планете живые организмы освоили четыре среды обитания. Водная среда была первой, в которой возникла и распространилась жизнь. Только потом организмы овладели наземно...

    Генная инженерия
    Введение Генная инженерия - это область биотехнологий, включающая в себя действия по перестройке генотипов. Суть генной инженерии сводится к пониманию того, что любой организм, будь т...

    Асептика в биотехнологии
    Введение Биотехнологические процессы в основном проводят в асептических условиях. Асептика - это комплекс мероприятий, направленных на предотвращение попадания в среду посторонних вещ...

    Размножение бактерий путем деления — самый распространенный метод увеличения численности микробной популяции. После деления происходит рост бактерий до исходного размера, для чего необходимы определенные вещества (факторы роста).

    Способы размножения бактерий различны, но для большинства их видов присуща форма бесполового размножения способом деления. Способом почкования бактерии размножаются исключительно редко. Половое размножение бактерий присутствует в примитивной форме.

    Рис. 1. На фото бактериальная клетка в стадии деления.

    Генетический аппарат бактерий

    Генетический аппарат бактерий представлен единственной ДНК — хромосомой. ДНК замкнута в кольцо. Хромосома локализована в нуклеотиде, не имеющем мембраны. В бактериальной клетке имеются плазмиды.

    Нуклеоид

    Нуклеоид является аналогом ядра. Он расположен в центре клетки. В нем локализована ДНК — носитель наследственной информации в свернутом виде. Раскрученная ДНК достигает в длину 1 мм. Ядерное вещество бактериальной клетки не имеет мембраны, ядрышка и набора хромосом, не делится митозом. Перед делением нуклеотид удваивается. Во время деления число нуклеотидов увеличивается до 4-х.

    Рис. 2. На фото бактериальная клетка на срезе. В центральной части виден нуклеотид.

    Плазмиды

    Плазмиды представляют собой автономные молекулы свернутые в кольцо двунитевой ДНК. Их масса значительно меньше массы нуклеотида. Несмотря на то, что в ДНК плазмид закодирована наследственная информация, они не являются жизненно важными и необходимыми для бактериальной клетки.

    Рис. 3. На фото бактериальная плазмида.

    Этапы деления

    После достижения определенных размеров, присущих взрослой клетке, запускаются механизмы деления.

    Репликация ДНК

    Репликация ДНК предшествует клеточному делению. Мезосомы (складки цитоплазматической мембраны) удерживают ДНК до тех пор, пока процесс деления (репликации) не завершится.

    Репликация ДНК осуществляется с помощью ферментов ДНК-полимеразами. При репликации водородные связи в 2-х спиральной ДНК разрываются, в результате чего из одной ДНК образуются две дочерние односпиральные. В последующем, когда дочерние ДНК заняли свое место в разделенных дочерних клетках, происходит их восстановление.

    Как только репликация ДНК завершилась, в результате синтеза появляется перетяжка, разделяющая клетку пополам. Вначале делению подвергается нуклеотид, затем цитоплазма. Синтез клеточной стенки завершает деление.

    Рис. 4. Схема деления бактериальной клетки.

    Обмен участками ДНК

    У сенной палочки процесс репликации ДНК завершается обменом участками 2-х ДНК.

    После деления клетки образуется перемычка, по которой ДНК одной клетки переходит в другую. Далее обе ДНК сплетаются. Некоторые отрезки обоих ДНК слипаются. В местах слипания происходит обмен отрезками ДНК. Одна из ДНК по перемычке уходит обратно в первую клетку.

    Рис. 5. Вариант обмена ДНК у сенной палочки.

    Типы делений бактериальных клеток

    Если клеточное деление опережает процесс разделения, то образуются многоклеточные палочки и кокки.

    При синхронном клеточном делении образуются две полноценные дочерние клетки.

    Если нуклеотид делится быстрее самой клетки, то образуются многонуклеотидные бактерии.

    Способы разделения бактерий

    Деление с помощью разламывания

    Деление с помощью разламывания характерно для сибиреязвенных бацилл. В результате такого деления клетки переламываются в местах сочленения, разрывая цитоплазматические мостики. Далее отталкиваются друг от друга, образуя цепочки.

    Скользящее разделение

    При скользящем разделении после деления клетка обосабливается и как бы скользит по поверхности другой клетки. Данный способ разделения характерен для некоторых форм эшерихий.

    Секущееся разделение

    При секущемся разделении одна из разделившихся клеток свободным концом описывает дугу круга, центром которого является точка ее контакта с другой клеткой, образуя римскую пятерку или клинопись (коринебактерии дифтерии, листерии).

    Рис. 6. На фото бактерии палочковидной формы, образующие цепочки (сибиреязвенные палочки).

    Рис. 7. На фото скользящий способ разделения кишечных палочек.

    Рис. 8. Секущийся способ разделения коринебактерий.

    Вид скоплений бактерий после деления

    Скопления делящихся клеток имеют разнообразную форму, которая зависит от направления плоскости деления.

    Шаровидные бактерии располагаются по одному, по двое (диплококки), пакетами, цепочками или как гроздья винограда. Палочковидные бактерии — цепочками.

    Спиралевидные бактерии — хаотично.

    Рис. 9. На фото микрококки. Они круглые, гладкие, имеют белую, желтую и красную окраску. В природе микрококки распространены повсеместно. Живут в разных полостях человеческого организма.

    Рис. 10. На фото бактерии диплококки — Streptococcus pneumoniae.

    Рис. 11. На фото бактерии сарцины. Кокковидные бактерии соединяются в пакеты.

    Рис. 12. На фото бактерии стрептококки (от греческого «стрептос» — цепочка). Располагаются цепочками. Являются возбудителями целого ряда заболеваний.

    Рис. 13. На фото бактерии «золотистые» стафилококки. Располагаются, как «гроздья винограда». Скопления имеют золотистую окраску. Являются возбудителями целого ряда заболеваний.

    Рис. 14. На фото извитые бактерии лептоспиры — возбудители многих заболеваний.

    Рис. 15. На фото палочковидные бактерии рода Vibrio.

    Скорость деления бактерий

    Скорость деления бактерий крайне высока. В среднем одна бактериальная клетка делится каждые 20 минут. В течение только одних суток одна клетка образует 72 поколения потомства. Микобактерии туберкулеза делятся медленно. Весь процесс деления занимает у них около 14 часов.

    Рис. 16. На фото отображен процесс деления клетки стрептококка.

    Половое размножение бактерий

    В 1946 году учеными было обнаружено половое размножение в примитивной форме. При этом гаметы (мужские и женские половые клетки) не образуются, однако некоторые клетки обмениваются генетическим материалом (генетическая рекомбинация ).

    Передача генов осуществляется в результате конъюгации — однонаправленного переноса части генетической информации в виде плазмид при контакте бактериальных клеток.

    Плазмиды представляют собой молекулы ДНК небольшого размера. Они не связаны с геномом хромосом и способны удваиваться автономно. В плазмидах содержаться гены, которые повышают устойчивость бактериальных клеток к неблагоприятным условиям внешней среды. Бактерии часто передают эти гены друг другу. Отмечается так же передача генной информации бактериям другого вида.

    При отсутствии истинного полового процесса именно конъюгация играет огромную роль при обмене полезными признаками. Так передается способность бактерий проявлять лекарственную устойчивость. Для человечества особо опасным является передача устойчивости к антибиотикам между болезнетворными популяциями.

    Рис. 17. На фото момент конъюгации двух кишечных палочек.

    Фазы развития бактериальной популяции

    При посевах на питательную среду развитие бактериальной популяции проходит несколько фаз.

    Исходная фаза

    Исходная фаза — это период от момента посева до их роста. В среднем исходная фаза длится 1 — 2 часа.

    Фаза задержки размножения

    Это фаза интенсивного роста бактерий. Ее длительность составляет около 2-х часов. Она зависит от возраста культуры, периода приспособления, качества питательной среды и др.

    Логарифмическая фаза

    В эту фазу отмечается пик скорости размножения и увеличения бактериальной популяции. Ее длительность составляет 5 — 6 часов.

    Фаза отрицательного ускорения

    В эту фазу отмечается спад скорости размножения, уменьшается количество делящихся и увеличивается число погибших бактерий. Причина отрицательного ускорения — истощение питательной среды. Ее длительность составляет около 2-х часов.

    Стационарная фаза максимума

    В стационарную фазу отмечается равное количество погибших и вновь образованных особей. Ее длительность составляет около 2-х часов.

    Фаза ускорения гибели

    В эту фазу прогрессивно нарастает количество погибших клеток. Ее длительность составляет около 3-х часов.

    Фаза логарифмической гибели

    В эту фазу клетки бактерий отмирают с постоянной скоростью. Ее длительность составляет около 5-и часов.

    Фаза уменьшения скорости отмирания

    В эту фазу оставшиеся живыми клетки бактерий переходят в состояние покоя.

    Рис. 18. На рисунке отображена кривая роста бактериальной популяции.

    Рис. 19. На фото колонии синегнойной палочки сине-зеленого цвета, колонии микрококков желтого цвета, колонии Bacterium prodigiosum кроваво-красного цвета и колонии Bacteroides niger черного цвета.

    Рис. 20. На фото колонии бактерий. Каждая колония — потомство одной-единственной клетки. В колонии число клеток исчисляется миллионами. вырастает колония за 1 — 3 суток.

    Деление магниточувствительных бактерий

    В 1970-х годах были открыты бактерии, обитающие в морях, которые обладали чувством магнетизма. Магнетизм позволяет этим удивительным существам ориентироваться по линиям магнитного поля Земли и находить серу, кислород и другие, так необходимые ей вещества. Их «компас» представлен магнитосомами, которые состоят из магнита. При делении магниточувствительные бактерии делят свой компас. При этом перетяжки при делении становится явно недостаточно, поэтому бактериальная клетка сгибается и делает резкий перелом.

    Рис. 21. На фото момент деления магниточувствительной бактерии.

    Рост бактерий

    Вначале деления бактериальной клетки две молекулы ДНК расходятся в разные концы клетки. Далее клетка делится на две равноценные части, которые отделяются друг от друга и увеличиваются до исходного размера. Скорость деления многих бактерий составляет в среднем 20 — 30 минут. В течение только одних суток одна клетка образует 72 поколения потомства.

    Масса клеток в процессе роста и развития быстро поглощает питательные вещества из окружающей среды. Этому способствуют благоприятные факторы внешней среды — температурный режим, достаточное количество питательных веществ, необходимая pH среды. Для клеток аэробов необходим кислород. Для анаэробов он представляет опасность. Однако безграничное размножение бактерий в природе не происходит. Солнечный свет, сухой воздух, недостаток пищи, высокая температура окружающей среды и другие факторы губительно действуют на бактериальную клетку.

    Рис. 22. На фото момент деления клетки.

    Факторы роста

    Для роста бактерий необходимы определенные вещества (факторы роста), часть из которых синтезируется самой клеткой, часть поступает из окружающей среды. Потребность в факторах роста у всех бактерий разная.

    Потребность в факторах роста является постоянным признаком, что позволяет использовать его для идентификации бактерий, подготовке питательных сред и использовать в биотехнологии.

    Факторы роста бактерий (бактериальные витамины) — химические элементы, большинством из которых являются водорастворимые витамины группы В. В эту группу входят так же гемин, холин, пуриновые и пиримидиновые основания и другие аминокислоты. При отсутствии факторов роста наступает бактериостаз.

    Бактерии используют факторы роста в минимальных количествах и в неизменном виде. Ряд химических веществ этой группы входят в состав клеточных ферментов.

    Рис. 23. На фото момент деления палочковидной бактерии.

    Важнейшие бактериальные факторы роста

    • Витамин В1 (тиамин) . Принимает участие в углеводном обмене.
    • Витамин В2» (рибофлавин) . Принимает участие в окислительно-восстановительных реакциях.
    • Пантотеновая кислота является составной частью кофермента А.
    • Витамин В6 (пиридоксин) . Принимает участие в обмене аминокислот.
    • Витамины В12 (кобаламины — вещества, содержащие кобальт). Принимают активное участие в синтезе нуклеотидов.
    • Фолиевая кислота . Некоторые ее производные входят в состав ферментов, катализирующих процессы синтеза пуриновых и пиримидиновых оснований, а также некоторых аминокислот.
    • Биотин . Участвует в азотистом обмене, а также катализирует синтез ненасыщенных жирных кислот.
    • Витамин РР (никотиновая кислота). Участвует в окислительно-восстановительных реакциях, образовании ферментов и обмене липидов и углеводов.
    • Витамин Н (парааминобензойная кислота). Является фактором роста многих бактерий, в том числе населяющих кишечник человека. Из парааминобензойной кислоты синтезируется фолиевая кислота.
    • Гемин . Является составной частью некоторых ферментов, которые принимают участие в реакциях окислениях.
    • Холин . Принимает участие в реакциях синтеза липидов клеточной стенки. Является поставщиком метильной группы при синтезе аминокислот.
    • Пуриновые и пиримидиновые основания (аденин, гуанин, ксантин, гипоксантин, цитозин, тимин и урацил). Вещества необходимы главным образом в качестве компонентов нуклеиновых кислот.
    • Аминокислоты . Эти вещества являются составляющими белков клетки.

    Потребность в факторах роста некоторых бактерий

    Ауксотрофы для обеспечения жизнедеятельности нуждаются в поступлении химических веществ из вне. Например, клостридии не способны синтезировать лецитин и тирозин. Стафилококки нуждаются в поступлении лецитина и аргинина. Стрептококки нуждаются в поступлении жирных кислот — компонентов фосфолипидов. Коринебактерии и шигеллы нуждаются в поступлении никотиновой кислоты. Золотистые стафилококки, пневмококки и бруцеллы нуждаются в поступлении витамина В1. Стрептококки и бациллы столбняка — в пантотеновой кислоте.

    Прототрофы самостоятельно синтезируют необходимые вещества.

    Рис. 24. Разные условия окружающей среды по-разному влияют на рост колоний бактерий. Слева — стабильный рост в виде медленно расширяющегося круга. Справа — быстрый рост в виде «побегов».

    Изучение потребности бактерий в факторах роста позволяет ученым получать большую микробную массу, так необходимую при изготовлении антимикробных препаратов, сывороток и вакцин.

    Подробно о бактерияx читай в статьях:

    Размножение бактерий является механизмом повышения числа микробной популяции. Деление бактерий — основной способ размножения. После деления бактерии должны достигнуть размеров взрослых особей. Рост бактерий происходит путем быстрого поглощения питательных веществ их окружающей среды. Для роста необходимы определенные вещества (факторы роста), часть из которых синтезирует сама бактериальная клетка, часть поступает из окружающей среды.

    Изучая рост и размножение бактерий, ученые постоянно открывают полезные свойства микроорганизмов, использование которых в повседневной жизни и на производстве ограничивается только их свойствами.

    © 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары