Вконтакте Facebook Twitter Лента RSS

Что называется связью в механике. Простейшие типы связей

Тела, рассматриваемые в механике, могут быть сво­бодными и несвободными .

Свободным называют тело, которое не испытывает никаких препятствий для перемещения в пространстве в любом направлении. Если же тело связано с другими телами, которые ограничивают его движение в одном или нескольких направлениях, то оно является несвободным .

Тела, которые ограничивают движение рассматриваемого тела называют связями .

В результате взаимодействия между телом и его свя­зями возникают силы , противодействующие возможным движениям тела . Эти силы действуют на тело со стороны связей и называются реакциями связей.

Реакция связи всегда противоположна тому направле­нию, по которому связь препятствует движению тела.

Определение реакций связей является одной из наи­более важных задач статики. Ниже приведены наиболее распространенные виды связей, встречающиеся в меха­нике.

Связь в виде гладкой (т. е. без учета сил трения) плоскости или поверхности (рис.а, б ). В этом случае реакция связи всегда направлена по нормали к опорной поверхности .

Связь в виде шероховатой плоскости (рис. в ). Здесь возникают две составляющие реакции: нормальная N , перпендикулярная плоскости, и касательная Т , лежащая в плоскости. Касательная реакция Т называется силой трения и всегда направлена в сторону, противоположную действительному или возможному движению тела.

Полная реакция R , равная геометрической сумме нормальной и касательной составляющих

R =N + Т , отклоняется от нормали к опорной поверхности на некоторый угол ρ .

При взаимодействии тела с реальными связями возни­кают силы трения . Однако во многих случаях силы тре­ния незначительны и вследствие этого ими часто пренебре­гают , т. е. считают связи абсолютно гладкими .

Связи , в которых отсутствуют силы трения , называют идеальными . Приведенная выше связь в виде гладкой плоскости или поверхности относится к категории иде­альных .

Гибкая связь, осуществляемая веревкой, тросом, цепью и т. п. (рис. г ). Реакция гибкой связи направ­лена вдоль связи, причем гибкая связь может работать только на растяжение .

Связь в виде жесткого стержня с шарнирным закреп­лением концов (рис.д ). Здесь реакции, так же как и в гибкой связи, всегда направлены вдоль осей стерж­ней , но стержни могут быть как растянутыми, так и сжа­тыми .

Связь, осуществляемая ребром двугранного угла или точечной опорой (рис.е ). Реакция такой связи направлена перпендикулярно поверхности опирающегося тела, если эту поверхность можно считать гладкой .

Существование реакций связей обосновывается . Для определения реакций связей используют прием освобождения от связей.

Вот этот прием. Не изменяя равновесия тела или системы тел, каждую связь, наложенную на систему, можно отбросить, заменив ее действием реакции отброшенной связи.

Связи и их реакции Свободное тело – это тело, которое может совершать из данного положения любые перемещения в пространстве. Несвободное тело – тело, перемещению которого в пространстве препятствуют какиенибудь другие, скрепленные или соприкасающиеся с ним тела. Связь – это все, что ограничивает перемещения данного тела в пространстве.

Силой давления на связь называется сила, действующая на тело, стремясь под действием приложенных сил осуществить перемещение, которому препятствует связь. Одновременно, по закону о равенстве действия и противодействия связь будет действовать на тело с такой же по модулю, но противоположно направленной силой. Силой реакции связи или просто реакцией связи называется сила, с которой данная связь действует на тело, препятствуя тем или иным его перемещениям. Направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу.

Направление реакции связи основных взаимодействий: Сферическ ий шарнир и подпятник Гладкая плоскость или опора Невесомый стержень Цилиндрически й шарнир (подшипник) Нить

Направление реакции связи основных взаимодействий: 1. Гладкая плоскость или опора. Такая поверхность не дает телу перемещаться только по направлению общего перпендикуляра к поверхности соприкасающихся тех в точке их касания.

Направление реакции связи основных взаимодействий: Когда одна из соприкасающихся поверхностей является точкой, то реакция направлена по нормали к другой поверхности.

Направление реакции связи основных взаимодействий: 2. Нить. Связь осуществляется в виде гибкой нерастяжимой нити. Она не дает удаляться телу от точки подвеса нити (.)А. Реакция Т натянутой нити направлена вдоль нити к точке подвеса.

Направление реакции связи основных взаимодействий: 3. Цилиндрический шарнир (подшипник) осуществляет такое соединение двух тел, при котором одно тело может вращаться по отношению к другому вокруг общей оси, называемой осью шарнира. Если тело АВ прикреплено с помощью такого шарнира к неподвижной опоре D, то (.)А тела не может при этом переместиться ни по какому направлению, перпендикулярному оси шарнира.

Направление реакции связи основных взаимодействий: 4. Сферический шарнир и подпятник. Тела, соединенные шарниром, могут как угодно поворачиваться одно относительно другого вокруг центра шарнира. Если тело прикреплено с помощью такого шарнира к неподвижной опоре, то (.)А тела не может при этом совершать никакого перемещения в пространстве.

Одним из основных понятий механики является понятие механической системы. Под механической системой понимают совокупность конечного или бесконечного числа материальных точек (или тел), взаимодействующих между собой в соответствии с третьим законом Ньютона. Отсюда следует, что движение каждой точки (или тела) системы зависит как от положения, так и от движения остальных точек рассматриваемой механической системы.

Системы различают свободные и несвободные. Система называется свободной, если все входящие в нее точки могут занимать произвольные положения и иметь произвольные скорости. В противном случае, т. е. когда материальные точки, входящие в систему, не могут занимать произвольных положений или же не могут иметь произвольных скоростей, система называется несвободной.

Примером свободной механической системы может служить солнечная система, в которой Солнце и планеты можно рассматривать как материальные тела, находящиеся под взаимным действием сил ньютонианского притяжения.

Примером несвободной системы может служить система, состоящая из точек, из которых одна или

несколько вынуждены при своем движении оставаться на каких-либо линиях или поверхностях.

С указанным делением систем на свободные и несвободные связано понятие связи.

Под связью в механике понимают условия, накладывающие ограничения на свободу перемещения точек системы. Связи могут накладывать ограничения как на положения точек, так и на их скорости. Практически связи осуществляются с помощью материальных тел или приспособлений (стержней, нитей, шарниров и т. п.).

Подобно тому как силы, действующие на точки системы, подразделяют на силы внутренние и силы внешние, так и связи, наложенные на точки системы, можно подразделить на связи внутренние и связи внешние. Под внутренними связями понимают такие связи, которые будучи наложены на точки системы, не препятствуют системе свободно перемещаться после того, как она внезапно отвердеет. Связь, не обладающая этим свойством, называется внешней. Например, если две точки твердого тела соединены между собой нерастяжимым и невесомым стержнем, то такая связь будет внутренней. Таким образом твердое тело можно рассматривать как систему, подчиненную внутренним связям. Если же одна из точек твердого тела шарнирно закреплена, то в этом случае связь будет внешней.

Система, подчиненная одним лишь внутренним связям, является свободной, так как она может перемещаться как свободное твердое тело. Если же в числе связей, наложенных на точки системы, имеются внешние связи, то система является несвободной.

Условия, ограничивающие свободу перемещения точек системы, аналитически выражаются в виде уравнений или неравенств вида.

где - время, - соответственно координаты и скорости точки системы,

отнесенные к некоторой инерциальной системе отсчета, относительно которой рассматривается движение данной системы.

Связи различают удерживающие и неудерживающие; первым соответствует знак равенства в (1.1), вторым - знак неравенства.

Удерживающие и неудерживающие связи иногда соответственно называют двухсторонними и односторонними связями. Удерживающая связь, препятствуя перемещению в одном направлении, препятствует также перемещению в противоположном направлении. Неудерживающая связь препятствует перемещению в одном направлении, но не препятствует перемещению в противоположном направлении.

Примером удерживающей связи могут служить две параллельные плоскости, между которыми происходит движение шарика. Рассматривая среднюю между ними плоскость как координатную плоскость получаем уравнение связи в виде: Если же шарик движется по горизонтальной плоскости любой момент может покинуть ее, то эта плоскость будет являться неудерживающей связью. Условие такой связи будет выражаться неравенством (или ).

Другим примером неудерживающей связи может служить нить с шариком на конце. Принимая точку подвеса нити за начало координат и считая нить нерастяжимой, можем условие этой связи записать в виде неравенства

где - координаты шарика, - длина нити.

Если в процессе движения шарика выполняется неравенство

то это означает, что нить ослаблена и шарик освободился от связи.

Если же при движении шарика выполняется равенство

то это означает, что нить натянута, и на шарик действует связь.

В зависимости от того, содержит ли уравнение связи в явном виде время или нет, связи подразделяются на нестационарные (реономные) и стационарные (склерономные).

Связи, которые накладывают ограничения только на положения точек системы, называются конечными или геометрическими; аналитически они выражаются уравнением

Здесь и в дальнейшем предполагаем связи удерживающими.

Если же связи накладывают ограничения не только на положения точек, но и на их скорости, то они называются дифференциальными или кинематическими, и их аналитическое выражение имеет вид

Связи подразделяют также на голономные и неголономные. К голономным связям относят все конечные или геометрические связи вида (1.2), т. е. все связи, которые накладывают ограничения на возможные положения точек системы. К голономным связям относятся также и дифференциальные связи, которые путем интегрирования могут быть приведены к соотношениям вида (1.2):

где - некоторые функции координат возможно, времени .

Если же дифференциальные связи вида (1.4) не могут быть путем интегрирования приведены к конечным соотношениям вида (1.2), то они называются

неголономными или неинтегрируемими. Г. Герц обратил внимание на важность различия между голономными и неголономными связями для понятия виртуального перемещения системы.

Легко видеть, что если голономные связи накладывают ограничения на возможные положения точек системы, то неголономные связи накладывают ограничения на скорости точек системы. Это следует из того, что уравнение неголономной связи (1.4) всегда может быть представлено в следующем виде:

Механические системы, подчиненные голономным связям, называются голономными системами. Если же в числе связей имеются неголономные, то системы называются неголономными.

Если на систему наложены только неголономные связи, то такая система называется сдвершенно неголономной или собственно неголономной.

Классическим примером движения неголономной системы может служить качение твердого шара по шероховатой плоскости (например, движение бильярдного шара).

Пусть твердый шар радиусом катится без скольжения по абсолютно шероховатой плоскости. Возьмем две системы координат с общим началом в центре шара С. Одна из них (система пусть движется поступательно, а вторая (система ) пусть будет жестко связана с шаром (рис. 1).

Положение шара в каждый момент времени может быть определено пятью координатами: двумя координатами центра шара (третья координата ) и тремя углами Эйлера: углом прецессии углом нутации 0 и углом собственного вращения (рис. 1). Условием связи в рассматриваемой задаче является условие касания шара с плоскостью и обращение

в нуль скорости точки А касания шара. Принимая центр шара С за полюс и обозначая его скорость через мгновенную угловую скорость вращения шара - через , а вектор-радиус, проведенный из центра шара в точку касания , - через , можем записать скорость точки А в следующем виде:

Проектируя это векторное равенство на оси координат и удовлетворяя условию связи получаем

где - составляющие вектора угловой скорости . Последнее уравнение интегрируется и дает одно уравнение связи показывающее, что центр шара С движется в плоскости, параллельной плоскости и отстоящей от нее на расстоянии, равном радиусу шара R.

Связи и их реакции

По определению, тело, которое не скреплено с другими телами и может совершать из данного положе­ния любые перемещения в пространстве, называется свободным (например, воздушный шар в воздухе). Тело, перемещениям которого в пространстве препятствуют какие-нибудь другие, скрепленные или соприкасающиеся с ним тела, называется несвободным . Все то, что ограничивает перемещения данного тела в пространстве, будем называть связью.

Например, тело лежащее на столе – несвободное тело. Связью его является плоскость стола, которая препятствует перемещению тела вниз.

Очень важен так называемый принцип освобождаемости , которым будем пользоваться в дальнейшем. Записывается он так.

Любое несвободное тело можно сделать свободным, если связи убрать, а действие их на тело заменить силами, такими, чтобы тело оставалось в равновесии.

Сила, с которой данная связь действует на тело, препятствуя тем ила иным его перемещениям, называется силой реакции (противодействия) связи или просто реакцией связи.

Так у тела, лежащего на столе, связь – стол. Тело несвободное. Сделаем его свободным – стол уберем, а чтобы тело осталось в равнове­сии, заменим стол силой, направленной вверх и равной, конечно, весу тела.

Направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу. Когда связь одновременно препятствует перемещениям тела по нескольким направлениям, направление реакции связи также наперед неизвестно и должно определяться в результате решения рассматриваемой задачи.

Рассмотрим, как направлены реакции некоторых основных видов связей.

1. Гладкая плоскость (поверхность) или опора. Гладкой будем называть поверхность, трением о которую данного тела можно в первом приближении пренебречь. Такая поверхность не дает телу перемещаться только по направлению общего перпен­дикуляра (нормали) к поверхностям соприкасающихся тел в точке их касания (рис.14,а ). Поэтому реакция N гладкой поверхности или опоры направлена по общей нормали к поверхностям сопри­касающихся тел в точке их касания и приложена в этой точке. Когда одна из соприкасающихся поверхностей является точкой (рис. 14,б ), то реакция направлена по нормали к другой поверх­ности.

Если поверхности не гладкие, надо добавить еще одну силу – силу трения , которая направлена перпендикулярно нормальной реакциив сторону, противоположную возможному скольжению тела.

Рис.14 Рис.15

Рис.16

2. Нить. Связь, осуществленная в виде гибкой нерастяжимой нити (рис.15), не дает телу М удаляться от точки подвеса нити по направлению AM . Поэтому реакция Т натянутой нити направлена вдоль нити от тела к точке ее подвеса. Если даже заранее можно догадаться, что реакция направлена к телу, все равно ее надо направить от тела. Таково правило. Оно избавляет от лишних и ненужных предположений и, как убедимся далее, помогает установить сжат стержень или растянут.

3. Цилиндрический шарнир (подшипник). Если два тела соединены болтом, проходящим через отверстия в этих телах, то такое соединение называется шарнирным или просто шарниром; осевая линия болта называется осью шарнира. Тело АВ , прикреплен­ное шарниром к опоре D (рис.16,а ), может поворачиваться как угодно вокруг оси шарнира (в плоскости чертежа); при этом конец А тела не может переместиться ни по какому направлению, перпен­дикулярному к оси шарнира. Поэтому реакция R цилиндрического шарнира может иметь любое направление в плоскости, перпен­дикулярной к оси шарнира, т.е. в плоскости А ху. Для силы R в этом случае наперед не известны ни ее модуль R , ни направле­ние (угол ).

4. Шаровой шарнир и подпятник. Этот вид связи закреп­ляет какую-нибудь точку тела так, что она не может совершать никаких перемещений в пространстве. При­мерами таких связей служат шаровая пята, с помощью которой прикрепляется фото­аппарат к штативу (рис.16,б ) и подшипник с упором (подпятник) (рис. 16,в ). Реакция R шарового шарнира или подпятника может иметь любое направление в пространстве. Для нее наперед неизвестны ни модуль реакции R , ни углы, образуемые ею с осями х, у, z .

Рис.17

5. Стержень. Пусть в какой-нибудь конструкции связью является стержень АВ , закрепленный на концах шарнирами (рис.17). Примем, что весом стержня по сравнению с воспринимаемой им нагрузкой можно пре­небречь. Тогда на стержень будут действовать только две силы при­ложенные в шарнирах А и В . Но если стержень АВ находится в равновесии, то по аксиоме 1 приложенные в точках А и В силы должны быть направлены вдоль одной прямой, т. е. вдоль оси стержня. Следовательно, нагруженный на концах стержень, весом ко­торого по сравнению с этими нагрузками можно пренебречь, работает только на растяжение или на сжатие. Если такой стержень является связью, то реакция стержня будет направлена вдоль оси стержня.

6. Подвижная шарнирная опора (рис.18, опора А ) препятствует движению тела только в направ­лении перпендикулярном плоскости скольжения опоры. Реакция такой опоры направлена по нормали к поверхности, на которую опираются катки подвижной опоры.

7. Неподвижная шарнирная опора (рис.18, опора В ). Реакциятакой опоры проходит через ось шарнира и может иметь любое направление в плоскости чертежа. При решении задач будем реакцию изображать ее составляющимиипо направлениям осей координат. Если мы, решив задачу, найдеми, то тем самым будет определена и реакция; по модулю

Рис.18

Способ закрепления, показанный на рис.18, употребляется для того, чтобы в балке АВ не возникало дополнительных напряжений при изменении ее длины от изменения температуры или от изгиба.

Заметим, что если опору А балки (рис.18) сделать тоже непо­движной, то балка при действии на нее любой плоской системы сил будет статически неопределимой, так как тогда в три уравнения равновесия вой­дут четыре неизвестные реакции ,,,.

8. Неподвижная защемляющая опора или жесткая заделка (рис.19). В этом случае на заделанный конец балки со стороны опорных плоско­стей действует система распределенных сил реакций. Считая эти силы приведен­ными к центру А , мы можем их заменить одной наперед неизвестной силой , приложенной в этом центре, и парой с наперед неизвестным моментом . Силу можно в свою очередь изобразить ее составляющими и. Таким образом, для нахождения реакции неподвижной защемляющей опоры надо определить три неизвестных величины,и.Если под такую балку где-нибудь в точке В подвести еще одну опору, то балка станет статически неопределимой.

Рис.19

При определении реакций связи других конструкций надо установить, разре­шает ли она двигаться вдоль трех взаимно перпендикулярных осей и вращаться вокруг этих осей. Если препятствует какому-либо движению – показать соот­ветствующую силу, если препятствует вращению – пару с соответствующим моментом.

Иногда приходится исследовать равновесие нетвердых тел. При этом будем пользоваться предположением, что если это нетвердое тело находится в равновесии под действием сил, то его можно рассматривать как твердое тело, используя все правила и методы статики.

Рассмотрим тело, которое может перемещаться без трения по гладкой горизонтальной поверхности (Рис.1а ).

Пусть в качестве активной силы выступает сила веса $\vec{Р}$, приложенная в его центре тяжести. Реакция связи $\vec{N}$ представлена силой, распределенной по плоскости нижней грани этого тела, и ее можно считать приложенной в центре этой грани.

Принципиально картина не меняется, если поверхность тела или связи будет гладкой, но криволинейной (Рис.1б ).

Пусть тело в виде бруса с гладкой поверхностью опирается в точке А на идеально гладкую поверхность, а в точке В – на уступ (Рис.1в ).

Нетрудно догадаться, что тело не сможет находиться в равновесии, если в качестве активной силы выступает его собственный вес, однако равновесие возможно, если к этому брусу приложить некоторую другую внешнюю силу $\vec{F}$. При этом, как будет показано в следующей главе, равновесие возможно только в том случае, если линия действия этой силы проходит через точку пересечения линий действия реакций $R_A$ и $R_B$.

Итак, по поводу этого типа связи можно сделать следующий вывод: реакция идеально гладкой поверхности приложена в точке касания и направлена по нормали к поверхности тела или связи .

2. Гибкая невесомая и нерастяжимая нить. Рассмотрим тело, которое подвешено на двух таких нитях и находится в равновесии под действием собственного веса и реакций нитей, прикрепленных к телу в точках А и В (Рис.2 слева ).

Слева: Гибкая невесомая и нерастяжимая нить

слева )
справа )

Реакция связи равна силе натяжения нити, она направлена вдоль нити и от тела, которое эта нить удерживает.

3. Жесткий невесомый прямолинейный стержень. Реакция направлена вдоль стержня , который, в отличие от нити, может воспринимать как растягивающие ($\vec{S_B}$), так и сжимающие ($\vec{S_A}$) усилия (Рис.2 справа ).

Справа : Жесткий невесомый прямолинейный стержень

Гибкая невесомая и нерастяжимая нить (слева )
Жесткий невесомый прямолинейный стержень (справа )

Допускает перемещение закрепленным таким образом точки тела только вдоль опорной плоскости (Рис.3а ).

Реакция направлена перпендикулярно заштрихованной опорной площадке.

В учебной литературе этот вид связи также называют подвижным цилиндрическим шарниром .

Помимо стандартного обозначения, предусмотренного ГОСТом, на схемах эту связь изображают так, как показано на рис.3б .

Отметим, что четыре рассмотренные связи имеют одну общую особенность: соответствующие им реакции известны по направлению и неизвестны по величине. То есть с точки зрения алгебры каждая из этих реакций соответствует только одному неизвестному .

Препятствует перемещению закрепленной таким образом точки тела в горизонтальном и вертикальном направлениях. Это означает, что в общем случае реакция $\vec{R_A}$ такой связи неизвестна по величине и по направлению . В качестве неизвестных при ее определении можно выбрать модуль реакции – $|\vec{R_A}|$ и угол $\varphi$, который она образует с осью Ox , либо проекции вектора $\vec{R_A}$ на оси координат: R AX , R AY (Рис.4а ).

Эта связь допускает поворот тела вокруг рассматриваемой точки, поэтому в учебной литературе эту связь также называют неподвижным цилиндрическим шарниром.

Помимо стандартного обозначения, предусмотренного ГОСТом, на схемах она изображается так, как показано на рис.4б .

6. Сферический шарнир. В отличие от цилиндрического шарнира не допускает перемещения закрепленной таким образом точки тела в трех взаимно перпендикулярных направлениях. В качестве неизвестных при ее определении выбирают проекции этой реакции на оси координат: R AX , R AY , R AZ (Рис.5 ).

© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары