Вконтакте Facebook Twitter Лента RSS

Колебательное движение. Свободные колебания

Наряду с поступательным и вращательным движением колебательное движение играет большую роль в макро- и микромире.

Различают хаотические и периодические колебания. Периодические колебания характеризуются тем, что через определенные равные промежутки времени колеблющаяся система проходит одни и те же положения. В качестве примера можно привести кардиограмму человека, представляющую собой запись колебаний электрических сигналов сердца (рис. 2.1). На кардиограмме можно выделить период колебаний, т.е. время Т одного полного колебания . Но периодичность не есть исключительная особенность колебаний, ею обладает также и вращательное движение. Наличие положения равновесия является особенностью механического колебательного движения, тогда как вращение характеризуется так называемым безразличным равновесием (хорошо сбалансированное колесо или игорная рулетка, будучи раскрученными, останавливается в любом положении равновероятно). При механических колебаниях в любом положении, кроме положения равновесия, существует сила, стремящаяся вернуть колеблющуюся систему в начальное положение т.е. возвращающая сила, всегда направленная к положению равновесия. Наличие всех трех признаков отличает механическое колебание от остальных видов движения.

Рис. 2.1.

Рассмотрим конкретные примеры механических колебаний.

Зажмем в тиски один конец стальной линейки, а другой, свободный, отведем в сторону и отпустим. Под действием сил упругости линейка будет возвращаться в исходное положение, которое является положением равновесия. Проходя через это положение (которое является положением равновесия), все точки линейки (кроме зажатой части) будут иметь определенную скорость и определенный запас кинетической энергии. По инерции колеблющаяся часть линейки пройдет положение равновесия и будет совершать работу против внутренних сил упругости за счет убыли кинетической энергии. Это приведет к возрастанию потенциальной энергии системы. Когда кинетическая энергия полностью исчерпается, потенциальная энергия достигнет максимума. Сила упругости, действующая на каждую колеблющуюся точку, также достигнет максимума и будет направлена к положению равновесия. Это описано в подразделах 1.2.5 (соотношение (1.58)), 1.4.1, а также в 1.4.4 (см. рис. 1.31) на языке потенциальных кривых. Так будет повторяться до тех пор, пока полная механическая энергия системы не перейдет во внутреннюю энергию (энергию колебаний частиц твердого тела) и не рассеется в окружающее пространство (напомним, что силы сопротивления относятся к диссипативным силам).

Таким образом, в рассматриваемом движении есть повторяемость состояний и есть силы (силы упругости), стремящиеся вернуть систему в положение равновесия. Следовательно, линейка будет совершать колебательное движение.

Другой известный всем пример - колебания маятника. Положение равновесия маятника отвечает низшему положению его центра тяжести (в этом положении потенциальная энергия, обусловленная силами тяжести, минимальна). В отклоненном положении на маятник будет действовать момент силы относительно оси вращения, стремящийся вернуть маятник в положение равновесия. В этом случае также есть все признаки колебательного движения. Понятно, что в отсутствии силы тяжести (в состоянии невесомости) не будут выполнены оговоренные выше условия: в состоянии невесомости отсутствует сила тяжести и возвращающий момент этой силы. И здесь маятник, получив толчок, будет двигаться по окружности, то есть совершать не колебательное, а вращательное движение.

Колебания могут быть не только механическими. Так, например, можно говорить о колебаниях заряда на пластинах конденсатора, соединенного параллельно с катушкой индуктивности (в колебательном контуре), или напряженности электрического поля в конденсаторе. Их изменение со временем описывается уравнением, подобным тому, что определяет механическое смещение от положения равновесия маятника. Ввиду того, что одинаковыми уравнениями можно описывать колебания самых различных физических величин, оказывается очень удобным рассмотрение колебаний безотносительно к тому, какая физическая величина колеблется. Это порождает систему аналогий, в частности, электромеханическую аналогию. Для определенности будем пока рассматривать механические колебания. Рассмотрению подлежат только периодические колебания, при которых значения изменяющихся в процессе колебаний физических величин повторяются через равные промежутки времени.

Величина, обратная периоду Т колебаний (как и времени одного полного оборота при вращении), выражает число полных колебаний, совершаемых в единицу времени, и называется частотой (это просто частота, она измеряется в герцах или с -1)

(при колебаниях так же, как при вращательном движении).

Угловая скорость связывается с введенной соотношением (2.1) частотой v формулой

измеряется в рад/с или с -1 .

Естественно начать анализ колебательных процессов с наиболее простых случаев колебательных систем с одной степенью свободы. Число степеней свободы - это число независимых переменных, необходимых для полного определения положения в пространстве всех частей данной системы . Если, например, колебания маятника (груз на нити и др.) ограничены плоскостью, в которой только и может перемещаться маятник, и если нить маятника нерастяжима, то достаточно задать только один угол отклонения нити от вертикали или только величину смещения от положения равновесия - для груза, колеблющегося вдоль одного направления на пружине, чтобы полностью определить его положение. В этом случае мы говорим, что рассматриваемая система обладает одной степенью свободы. Тот же маятник, если он может занимать любое положение на поверхности сферы, на которой лежит траектория его движения, обладает двумя степенями свободы. Возможны и трехмерные колебания, как это имеет место, например, при тепловых колебаниях атомов кристаллической решетки (см. подраздел 10.3). Для анализа процесса в реальной физической системе мы выбираем его модель, заранее ограничив исследование рядом условий.

  • Здесь и далее период колебаний будет обозначаться той же буквой, что и кинетическаяэнергия - Т (не путать!).
  • В главе 4 «Молекулярная физика» будет дано и другое определение числа степеней свободы.

Поэтому исследованиями этих закономерностей занимается обобщённая теория колебаний и волн . Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, так сказать, «местные» преобразования.

Классификация

Выделение разных видов колебаний зависит от подчёркиваемых свойств систем с колебательными процессами (осцилляторов).

По используемому математическому аппарату

  • Нелинейные колебания

По периодичности

Так, периодические колебания определены следующим образом:

Периодическими функциями называются, как известно, такие функции f (t) {\displaystyle f(t)} , для которых можно указать некоторую величину τ {\displaystyle \tau } , так что f (t + τ) = f (t) {\displaystyle f(t+\tau)=f(t)} при любом значении аргумента t {\displaystyle t} . Андронов и соавт.

По физической природе

  • Механические (звук , вибрация)
  • Электромагнитные (свет , радиоволны , тепловые)
  • Смешанного типа - комбинации вышеперечисленных

По характеру взаимодействия с окружающей средой

  • Вынужденные - колебания, протекающие в системе под влиянием внешнего периодического воздействия. Примеры: листья на деревьях, поднятие и опускание руки. При вынужденных колебаниях может возникнуть явление резонанса : резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.
  • Свободные (или собственные) - это колебания в системе под действием внутренних сил после того, как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие). Простейшими примерами свободных колебаний являются колебания груза, прикреплённого к пружине, или груза, подвешенного на нити.
  • Автоколебания - колебания, при которых система имеет запас потенциальной энергии , расходующейся на совершение колебаний (пример такой системы - механические часы). Характерным отличием автоколебаний от вынужденных колебаний является то, что их амплитуда определяется свойствами самой системы, а не начальными условиями.
  • Параметрические - колебания, возникающие при изменении какого-либо параметра колебательной системы в результате внешнего воздействия.

Параметры

Период колебаний T {\displaystyle T\,\!} и частота f {\displaystyle f\,\!} - обратные величины;

T = 1 f {\displaystyle T={\frac {1}{f}}\qquad \,\!} и f = 1 T {\displaystyle f={\frac {1}{T}}\,\!}

В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая (циклическая) частота ω {\displaystyle \omega \,\!} (рад /с, Гц, с −1) , показывающая число колебаний за 2 π {\displaystyle 2\pi } единиц времени:

ω = 2 π T = 2 π f {\displaystyle \omega ={\frac {2\pi }{T}}=2\pi f\,\!}
  • Смещение - отклонение тела от положения равновесия. Обозначение Х, Единица измерения - метр.
  • Фаза колебаний - определяет смещение в любой момент времени, то есть определяет состояние колебательной системы.

Краткая история

Гармонические колебания были известны с XVII века.

Термин «релаксационные колебания» был предложен в 1926 г. ван дер Полем. Обосновывалось введение такого термина лишь тем обстоятельством, что указанному исследователю казались все подобные колебания связанными с наличием «времени релаксации» - т. е. с концептом, который на тот исторический момент развития науки представлялся наиболее понятным и широко распространённым. Ключевым свойством колебаний нового типа, описанных рядом перечисленных выше исследователей, было то, что они существенно отличались от линейных, - что проявляло себя в первую очередь как отклонение от известной формулы Томсона . Тщательное историческое исследование показало , что ван дер Поль в 1926 г. ещё не осознавал того обстоятельства, что открытое им физическое явление «релаксационные колебания» соответствует введённому Пуанкаре математическому понятию «предельный цикл », и понял он это лишь уже после вышедшей в 1929 г. публикации А. А. Андронова .

Иностранные исследователи признают тот факт, что среди советских учёных мировую известность приобрели ученики Л. И. Мандельштама , выпустившие в 1937 г. первую книгу , в которой были обобщены современные сведения о линейных и нелинейных колебаниях. Однако советские учёные «не приняли в употребление термин "релаксационные колебания", предложенный ван дер Полем. Они предпочитали термин "разрывные движения", используемый Блонделем , в частности потому, что предполагалось описывать этих колебаний в терминах медленных и быстрых режимов . Этот подход стал зрелым только в контексте теории сингулярных возмущений » .

Краткая характеристика основных типов колебательных систем

Линейные колебания

Важным типом колебаний являются гармонические колебания - колебания, происходящие по закону синуса или косинуса. Как установил в 1822 году Фурье , любое периодическое колебание может быть представлено как сумма гармонических колебаний путём разложения соответствующей функции в

Колебательными называются процессы, при которых параметры, характеризующие состояние колебательной системы, обладают определённой повторяемостью во времени. Такими процессами, например, могут являться суточные и годовые колебания температуры атмосферы и поверхности Земли, колебания маятников и т.д.

Если промежутки времени, через которые состояние системы повторяется, равны между собой, то колебания называются периодическими , а промежуток времени между двумя последовательными одинаковыми состояниями системы – периодом колебаний .

Для периодических колебаний функция, определяющая состояние колеблющейся системы, повторяется через период колебаний:

Среди периодических колебаний особое место занимают коле­бания гармонические , т.е. колебания, при которых характеристики движения системы изменяются по гармоническому закону, например:

(308)

Наибольшее внимание, уделяемое в теории колебаний именно часто встречающимся на практике гармоническим процессам, объясняется как тем, что для них наиболее хорошо развит аналитический аппарат, так и тем, что любые периодические колебания (и не только периодические) могут быть рассмотрены в виде определённой комбинации гармонических составляющих. В силу этих причин далее будут рассмотрены преимущественно гармонические колебания. В аналитическом выражении гармонических колебаний (308) величина x отклонения материальной точки от положения равно­весия называется смещением .

Очевидно, что максимальное отклонение точки от положения равновесия равно a, эта величина называется амплитудой колебаний . Физическая величина, равная:

и определяющая состояние колеблющейся системы в данный момент вре­мени, называется фазой колебаний . Значение фазы в момент начала от счёта времени

называется начальной фазой колебаний . Величина w в выражении фазы колебаний, определяющая быстроту колебательного процесса, называется его круговой или циклической частотой колебаний.

Состояние движения при периодических колебаниях должно повторяться через промежутки времени, равные периоду колебаний T. При этом, очевидно, фаза колебаний должна изменятся на 2p (период гармонической функции), т.е.:

Отсюда следует, что период колебаний и циклическая частота связаны между собой соотношением:

Скорость точки, закон движения которой определяется (301), также изменяется по гармоническому закону

(309)

Отметим, что смещение и скорость точки неодновременно обращаются в нуль или принимают максимальные значения, т.е. смешение и скорость отличаются по фазе.

Аналогично получаем, что ускорение точки равно:

Из выражения для ускорения видно, что оно смещено по фазе относительно смещения и скорости. Хотя смешение и ускорение одновременно проходят через нуль, в этот момент времени они имеют противоположные направления, т.е. смещены на p. Графики зависимостей смещения, скорости и ускорения от времени при гармонических колебаниях представлены условном масштабе на рис.81.

– это один из частных случаев неравномерного движения. Примеров колебательного движения в жизни много: это и качание качелей, и раскачивание маршрутки на рессорах, и движение поршней в двигателе… Эти движения различаются, но у них есть общее свойство: раз в некоторое время движение повторяется.

Это время называется периодом колебаний .

Рассмотрим один из простейших примеров колебательного движения – пружинный маятник. Пружинный маятник – это пружина, соединённая одним концом с неподвижной стеной, а другим – с подвижным грузом. Для простоты будем считать, что груз может двигаться только вдоль оси пружины. Это реалистичное допущение – в реальных упругих механизмах обычно груз движется вдоль направляющей.

Если маятник не колеблется, и на него не действуют никакие силы, то он находится в положении равновесия. Если его отвести от этого положения и отпустить, то маятник станет колебаться – он будет проскакивать точку равновесия на максимальной скорости и замирать в крайних точках. Расстояние от точки равновесия до крайней точки называется амплитудой , периодом в данной ситуации будет минимальное время между посещениями одной и той же крайней точки.

Когда маятник находится в крайней точке, на него действует сила упругости, стремящаяся вернуть маятник в положение равновесия. Она убывает по мере приближения к равновесию, и в равновесной точке становится равна нулю. Но маятник уже набрал скорость и проскакивает точку равновесия, и сила упругости начинает его тормозить.


В крайних точках у маятника максимальная потенциальная энергия, в точке равновесия – максимальная кинетическая.

В реальной жизни колебания обычно затухают, так как есть сопротивления среды. В таком случает от колебания к колебанию амплитуда уменьшается. Такие колебания называются затухающими .

Если же затухания нет, и колебания происходят из-за начального запаса энергии, то они называются свободными колебаниями .

Тела, участвующие в колебании, и без которых колебания были бы невозможными, вместе называются колебательной системой . В нашем случае колебательная система состоит из грузика, пружины и неподвижной стены. Вообще, колебательной системой можно назвать любую группу тел, способных к свободным колебаниям, то есть таких, в которых при отклонениях появляются силы, возвращающие систему к равновесию.

Характеристика колебаний

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

Начальное состояние колебательной системы характеризует начальная фаза

Амплитуда колебаний A - это наибольшее смещение из положения равновесия

Период T - это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний - это число полных колебаний в единицу времени t.

Частота, циклическая частота и период колебаний соотносятся как

Виды колебаний

Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными . Встречаются также автоколебания (вынуждаются автоматически).

Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические , затухающие , нарастающие (а также пилообразные, прямоугольные, сложные).

При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.

Вынужденные колебания. Резонанс

Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.

Вынужденные колебания

Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом .

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.


Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать

Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.

В музыкальных инструментах роль резонаторов выполняют части их корпусов. Человек также имеет собственный резонатор - это полость рта, усиливающая издаваемые звуки.

Явление резонанса необходимо учитывать на практике. В одних явлениях он может быть полезен, в других - вреден. Резонансные явления могут вызывать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 - разрушился Такомский мост в США.

Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.

© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары