Вконтакте Facebook Twitter Лента RSS

Максимальная интенсивность солнечного излучения на поверхности марса. На марсе сравнительно безопасный уровень радиации

Марсоход Curiosity проводит свои первые измерения радиации на поверхности другой планеты для того, чтобы определить, могут ли будущие исследователи жить на Марсе - так как марсоход пересекает ландшафт Красной Планеты. Curiosity смотрит назад на свои следы и холмы Mount Sharp и разрушенную кромку кратера Гейла на дальнем горизонте на 24 марсианский день миссии (30 августа 2012). Эта панорама представлена в новом документальном фильме PBS NOVA "Ultimate Mars Challenge" , который был представлен публике 14 ноября 2012. RAD расположен на палубе марсохода на этой цветной сшитой вместе мозаике из фотографий Navcam командой обработки фотографий из Ken Kremer и Marco Di Lorenzo. Предоставлено: NASA / JPL-Caltech / Ken Kremer / Marco Di Lorenzo.

Металлические роботы, построенные изобретательными людьми, могут выживать на Марсе. Но что же о будущих астронавтах людях?

Мужественный марсоход НАСА Mars Exploration Rover Opportunity процветал почти десятилетие, пересекая равнины Meridiani Planum, несмотря на продолжительную бомбардировку стерилизующей космической и солнечной радиацией от заряженных частиц благодаря его внутренностям, защищенным от радиации.

Как о людях? Какая судьба ожидает их на в смелой и вероятно долгой экспедиции продолжительностью в год в бесконечно экстремальной и решительно суровой окружающей среде на поверхности Красной Планеты, пропитанной радиацией - если кто-нибудь когда-нибудь доберется сюда с Земли? Сколько защиты необходимо людям?

Ответ на эти вопросы - один из ключевых квестов для марсохода Curiosity размером с внедорожник - прошло более 100 дней его 2-х летней главной миссии.

Предварительные данные выглядят многообещающими.

Curiosity пережил 8-ми месячное межпланетное путешествие и беспрецедентный маневр спуска через атмосферу на реактивном небесном кране для безопасного касания земли внутри кратера Гейла около возвышающихся слоистых холмов Mount Sharp высотой 5 км 6 августа 2012.

Теперь у есть задание оценить, предлагал ли когда-нибудь и пригодную для обитания микробных форм жизни среду - в прошлом или будущем. Характеристика естественно встречающихся уровней радиации, остающихся от галактического космического излучения и , будет адресована к вопросу как о микробах, так и об астронавтах. может разрушить органические молекулы около поверхности.

Исследователи используют инструмент Curiosity современного технического уровня Radiation Assessment Detector (RAD), чтобы отслеживать высоко энергетическую радиацию на ежедневной основе и помочь определить потенциал рисков для здоровья для реальной жизни, представленный для будущих исследователей-людей на марсианской поверхности.

"Атмосфера обеспечивает уровень защиты, и радиация от таких заряженных частиц меньше, когда атмосфера тоньше", сказал главный исследователь RAD Don Hassler из Юго-Западного Исследовательского Института в Боулдере, Коло. Смотрите графики ниже.

"Абсолютно, астронавты могут жить в этой среде. Она не сильно отличается от той, что астронавты могут испытывать на Международной Космической Станции. Реальный вопрос в том, что если сложить общий вклад в общую дозу астронавта на Марсе, миссия может иметь ограничения для вас, поскольку вы аккумулируете эти числа. Со временем вы достигните тех чисел", объяснил Hassler.

Первоначальные данные RAD первых двух месяцев на поверхности были продемонстрированы на медиа брифинге для репортеров в четверг 15 ноября 2012 и показывают, что радиация несколько ниже на поверхности Марса по сравнению с космической средой из-за защиты марсианской атмосферы.

Долгосрочные изменения радиации в кратере Гейла. График показывает изменение дозы радиации, измеренной Radiation Assessment Detector на марсоходе NASA Curiosity в течение 50 марсианских дней. (На Земле 10 марсианский день был 15 сентября и 60 день - 6 октября 2012). Мощность дозы (как от заряженных частиц, так и нейтральных частиц) была измерена, используя пластмассовый сцинтиллятор, и она показана красным. Предоставлено: NASA/JPL-Caltech/ SwRI.

RAD не обнаружил каких-либо больших солнечных вспышек с поверхности. "Это будет очень важно", сказал Hassler.

"Если бы там была массивная солнечная вспышка, она могла иметь острое воздействие, которое могло бы вызвать рвоту и потенциально подвергнуть миссию опасности с астронавтом в скафандре".

"В целом, атмосфера Марса уменьшает дозу радиации по сравнению с той, что мы видим в течение круиза к Марсу в два раза".

RAD работал и уже провел измерения радиации в течение межпланетного полета космического корабля по сравнению с новыми данными, теперь собранными на дне кратера Гейла.

Марсианское атмосферное давление немного меньше 1% от Земного. Оно чуть-чуть меняется в отношении атмосферных циклов в зависимости от температуры и цикла замерзания-таяния полярных ледяных шапок и результирующих ежедневных тепловых приливов.

"Мы видим ежедневное изменение дозы радиации, измеренной на поверхности, которая обратно пропорциональна давлению атмосферы. Атмосфера Марса действует как щит для радиации. Когда атмосфера становится толще, это обеспечивает больше защиты. Поэтому мы видим падения в дозе радиации на 3-5% каждый день", сказал Hassler.


Автопортрет Curiosity с Mount Sharp на песчаной дюне Rocknest в кратере Гейла. Curiosity использовал камеру Mars Hand Lens Imager (MAHLI) на роботизированной руке, чтобы отобразить себя и свое целевое место назначения Mount Sharp на заднем плане. Горы на фоне слева - это северная стена кратера Гейла. Эта цветная панорамная мозаика была собрана из необработанных фотографий, снятых на 85 марсианский день миссии (1 ноября 2012). Предоставлено: NASA/JPL-Caltech/MSSS/ /Marco Di Lorenzo.

Существуют также сезонные изменения в уровнях радиации, поскольку Марс движется в пространстве.

Команда RAD все еще обрабатывает данные о радиации.

"Есть калибровки и характеристики, которые мы завершаем, чтобы получить эти числа точными. Мы работаем над этим. И мы надеемся опубликовать их на встрече Американского Геофизического Союза в декабре".


Ежедневные циклы радиации и давления в кратере Гейла. Этот график показывает ежедневные изменения в марсианской радиации и атмосферном давлении, измеренные марсоходом Curiosity. Когда давление растет, общая доза радиации уменьшается. Когда атмосферное давление больше, оно обеспечивает лучший барьер с более эффективной защитой от радиации извне. В каждом максимуме давления, уровень радиации падает на 3-5%. Уровень радиации поднимается в конце графика из-за долгосрочной тенденции, которую ученые все еще изучают. Предоставлено: NASA/JPL-Caltech/SwRI.

Радиация - это фактор ограничения обитаемости жизни. RAD - это первый научный инструмент для прямого измерения радиации на поверхности другой планеты.

"Curiosity обнаруживает, что радиационная среда на Марсе чувствительна к марсианской погоде и климату", сделал вывод.

В отличие от Земли, Марс потерял свое магнитное поле около 3.5 миллиардов лет назад - и поэтому большую часть защитной способности от вредных уровней радиации энергетических частиц из космоса.

Гораздо больше данных нужно будет собрать RAD прежде чем какой-либо заключительный вывод по , и как долго и какой тип среды обитания, может быть получен.

Риск радиационного облучения на Марсе для людей не так велик, как считалось раньше, новые результаты, полученные марсоходом Curiosity (Кьюриосити), говорят о том, что теперь это не является препятствием для долговременных пилотируемых миссий к Красной Планете.

В результате миссии, которая будет состоять из 180 дней путешествия в один конец (к Красной Планете или обратно к Земле) и 500 дней, проведенных собственно на Марсе, человек получит суммарную дозу облучения, равную 1.01 зиверта, - таков результат измерений, проведенных детектором излучений ровера Radiation Assessment Detector (RAD).

Европейское Космическое Агентство ограничило допустимую дозу облучения, которую получают космонавты за все время своей работы, 1 зивертом – при этом риск возникновения злокачественных опухолей возрастает на 5%.

«Безусловно, это приемлемое число», - заявляет руководитель отдела RAD Дон Хасслер (Don Hassler) из Юго-Западного Научно-Исследовательского Института в Боулдере, и ведущий автор исследования, результаты которого были опубликованы 9 декабря в журнале Science.

Доза облучения, полученного на Марсе, в 1 зиверт, превышает существующие стандарты NASA, которые ограничивают для астронавтов возрастающий риск заболевания раком, тремя процентами. Однако эти границы были установлены для миссий, предназначенных для полетов на околоземной орбите, в ближайшее время они могут быть пересмотрены с учетом более далеких полетов, считает Хасслер.

"NASA работает с Институтом Медицины Национальной Академии Наук, чтобы оценить, какими будут приемлемые границы для дальних космических полетов, таких, как миссия на Марс", - заявляет Хасслер.

Новые результаты представляют собой наиболее полную на данный момент картину радиационного окружения на пути к Марсу и на поверхности Красной Планеты. В них входят данные, которые RAD собрал за 8 месяцев, которые длилось космическое путешествие к Марсу, и в течение первых 300 дней на планете, - с августа 2012 года.

Измерения RAD охватывают два разных типа излучения энергетических частиц – галактических космических лучей, которые ускоряются до невероятных скоростей взрывами отдаленных сверхновых, и солнечных энергетических частиц, которые выбрасываются в космос штормами, которые происходят на Солнце.

Данные RAD показывают, что космонавты, исследующие поверхность Марса, будут получать дозу, равную приблизительно 0.64 миллизиверта каждый день. Во время путешествия к Марсу уровень радиации будет выше приблизительно в три раза - 1.84 миллизиверта каждый день.

Однако, Хасслер подчеркивает, что радиационное окружение Марса динамично, поэтому измерения Curiosity – не окончательные. Например, данные RAD были собраны во время пика 11-летнего цикла солнечной активности, в то время, когда поток галактических космических лучей относительно низкий (так как солнечная плазма обычно рассеивает солнечные лучи).

Измерения, сделанные Curiosity, должны помочь NASA в планировании пилотируемой миссии к Марсу, которую космическое агентство планирует запустить в середине 2030-х. Так же они дают информацию, которая помогает в поисках признаков жизни на Красной Планете в настоящем или прошлом – еще одна из главных задач, поставленных NASA.

Например, Хасслер заявляет, что новые результаты исследований RAD позволяют предположить, что на поверхности Марса найти признаки жизни будет затруднительно. "Эти измерения говорят нам о том, что признаки жизни на планете в прошлом можно найти на глубине около 1 метра", - говорит Хасслер.

Curiosity исследовал уровень радиации на поверхности Марса и показал, что он примерно соответствует уровню радиации низкой околоземной орбиты, где долгое время провод

Curiosity исследовал уровень радиации на поверхности Марса и показал, что он примерно соответствует уровню радиации низкой околоземной орбиты, где долгое время проводят люди, например, на уровне Международной космической станции.

Визит на Марс, тем не менее, от этого не становится менее опасным, так как лететь придётся достаточно долго, а ведь ещё нужно пробыть некоторое время на Красной планете и вернуться на Землю.

В отличие от нашей планеты, на Марсе нет магнитосферы либо она настолько слаба, что её влиянием на какие-либо объекты можно пренебречь. А ведь именно магнитосфера в первую очередь защищает Землю от значительной части радиации, в основном пропуская лишь нейтральные частицы (фотоны, нейтрино и некоторые другие) и задерживая львиную долю заряженных частиц. Однако у Марса есть атмосфера. И хотя она тонкая и довольно разрежена, всё же она обеспечивает определённую защиту от радиации.

Дон Хасслер, один из операторов Curiosity, заявил о том, что это первое в человеческой истории измерение радиационной обстановки на какой-либо планете помимо Земли. Он добавил, что космонавты могут жить в такой среде. Очень повезло, что Марс имеет пусть даже такую атмосферу. Строго говоря, и на Луне есть атмосфера, однако она там настолько слаба, что её можно не учитывать и приравнивать к газовой составляющей космического пространства. На Марсе не учитывать влияние атмосферы не позволительно, подчеркнул Хасслер.

Метеостанция марсианского ровера многое поведала и о тепловом приливе. Дело в том, что Солнце нагревает атмосферу Марса на той стороне, которая обращена к Солнцу. В результате давление падает и она расширяется. На обратной стороне господствует холод и поэтому атмосфера там сжимается и становится тоньше, опускается.

Так как Марс совершает вращения вокруг своей оси, то выпуклость более тёплого воздуха движется вместе с солнечной стороной с востока на запад. Всё это подтвердил Curiosity, измерив изменения давления газов атмосферы в течение суток. И он также зафиксировал сопряжённость колебания уровня заряженных частиц, являющихся составной частью солнечного и галактического ветров. Понижения проникающей радиацией совпадали с повышением атмосферного давления. То есть, когда атмосфера уплотняется, заряженные частицы в меньшей степени проникают к поверхности Марса. Так что воздух марсианской атмосферы всё-таки в определённой мере выполняет защитную функцию.

Учёные на данный момент ещё не готовы оценить так называемую суточную дозу облучения людей, пребывающих в будущем на Марсе. Но ясно, что она будет намного ниже уровня радиации, зарегистрированным тем же Curiosity во время межпланетного полёта. Как говорят специалисты в сфере космонавтики, вот где главная проблема. Ведь за три года путешествия на Красную планету (туда и обратно) космонавты могут получить примерно в семь раз большую долю радиации, чем те, кто обитает на МКС за тот же срок.

Совокупная доза ионизирующего облучения увеличивает риски развития злокачественных опухолей и других последствий. Дело в том, что те частицы, которые обладают достаточно сильной энергией и буквально врезаются в тело человека, способны превращать атомы нашего тела в ионы и даже выбивать их из своих «законных» мест. Это и есть опасное действие ионизированного излучения. Поэтому космические агентства устанавливают строгие лимиты на пребывание в открытом космосе. Поэтому крайне необходимо знать как уровень радиации в открытом космосе, так и уровень радиации на Марсе.

Curiosity ещё предстоит выяснить, в какой степени Марс беззащитен перед солнечными вспышками, которые и на Землю оказывают серьёзное влияние. Поэтому специалисты НАСА полагают, что первое время на Марсе будут строиться подземные колонии, а на поверхность главным образом выходить будут роботы.

«За последние 200 дней пребывания на Марсе мы узнали о воздействии радиации. Конечно, космическое пространство - опасное место, и излучение является одной из многих причин. Предполагалось, что как только наши астронавты благополучно приземляться на поверхность Марса, планета обеспечит надежную защиту от разрушительного действия радиации. Но оказалось всё не так - радиация влияла не только на человека, но и на автоматические аппараты», - было опубликовано в журнале «Наука».

«На Земле от радиации мы защищены магнитосферой и относительно плотной атмосферой. Но радиация на Марсе - это неоспоримый факт», - сказал Дон Хеслер, автор статьи «Радиационная обстановка поверхности Марса измеряется в Марсианской научной лаборатории».

На Земле радиационное излучение связывают с последствиями катастроф, таких как Чернобыль и Фукусима. Иногда мы беспокоимся, что компьютерная томография, рентген и трансконтинентальные рейсы могут быть причиной облучения. Самым опасным источником излучения, по данным Общества по физическим основам радиационной безопасности, является радон.

Марсоход «Curiosity», находясь в 180-дневном путешествии, позволил вычислить среднюю дозу облучения. Это примерно 300 мЗв, что эквивалентно 24 компьютерным томографиям. Чтобы добраться до Марса, астронавт будет подвергаться 15-кратному годовому облучению, нежели работник атомной станции.

«Изменчивость в уровнях радиации была намного больше, чем ожидалось, - сказал Хеслер. - Существуют также сезонные колебания излучения».

Соавтор исследования Дженнифер Эйгенборд из Института космических исследований утверждает, что потоки излучения имеют решающее значение при определении возможности жизни на Красной планете. Самые мощные частицы в воздухе проникают в марсианский грунт. Воздействуя на поверхность, галактические космические лучи и сильные солнечные энергетические частицы производят гамма-лучи и нейтроны, способные разорвать молекулярные связи в почве. Возможно, этот процесс уничтожил все следы жизни, расположенные близко к поверхности. Новое исследование предполагает, что найти органические молекулы можно, нужно лишь копать гораздо глубже.

«Если мы найдем органику на Марсе, то это нам поможет направить наше исследование в новое русло», - сказала Эйгенборд.

«Зная уровень радиации, мы сможем конструировать различные системы на поверхности, чтобы защитить наших астронавтов от вредного воздействия», - сказал Хеслер.

Чтобы выжить в пути и на планете, необходимо знать космическую погоду. Прогнозирование космической погоды является относительно новой областью, но имеет решающее значение для всех космических миссий.

Прогноз космической погоды включает прогнозирование солнечных вспышек, геомагнитных бурь и выбросов корональной массы, исходящих от Солнца.

«С помощью детектора оценки излучения (RAD) мы продолжаем получать сведения об излучении поверхности, типе частиц и относительных частотах. В настоящее время это единственный способ оценки излучений на Марсе. Данная система поможет более точно разработать костюмы астронавтов, наилучшее место пребывания на планете, запланировать деятельность вне космического корабля. Благодаря измерениям RAD мы можем начать писать «Руководство по выживанию на Марсе», - заявил Хеслер.

ESA/ATG medialab

Приборы на борту орбитального зонда миссии «ЭкзоМарс» Trace Gas Orbiter (TGO) помогли ученым выяснить, что космонавты смогут совершить только один полет к Марсу без существенного риска для здоровья. Главную опасность представляет высокий уровень радиации, связанный с галактическими космическими лучами , говорится в статье, опубликованной в журнале Icarus .

Высокий уровень радиации считается одним из главных препятствий на пути пилотируемых экспедиций на Марс. В частности, данные прибора RAD на борту марсохода Curiosity, собранные во время перелета к красной планете, показали , что во время путешествия человек может получить дозу радиации, сопоставимую с предельно допустимой – примерно 0,66 зиверта, 95 процентов которой приходится на галактические космические лучи, и лишь 5 процентов - на излучение Солнца. Аналогичные результаты были получены в 2014 году в ходе наблюдений на лунной орбите при помощи детектора космических лучей CRaTER, установленного на борту зонда LRO. Как показали его замеры, риск онкологических заболеваний у космонавтов после 500-дневного полета к Марсу повысится на 4-5 процентов.

Игорь Митрофанов и его коллеги из Института космических исследований РАН, Института медико-биологических проблем РАН и Института космических исследований и технологий Болгарской академии наук пришли к схожим выводам, анализируя данные, собранные дозиметрическим модулем «Люлин-МО», установленным на борту российско-европейского зонда TGO, в октябре 2016 года. Модуль является частью российского нейтронного детектора FREND , и он, как и датчик RAD на борту Curiosity, был включен большую часть времени, которое зонд провел во время полета к четвертой планете Солнечной системы.

«Во время шестимесячного полета к Марсу и возвращения на Землю экипаж космического корабля получит примерно 60 процентов от дозы радиации, максимально допустимой для всей карьеры космонавта или астронавта, если полет будет осуществляться во время сниженной солнечной активности», - говорится в статье.


Прибор FREND с дозиметрическим модулем Люлин-МО

Как показали собранные данные, уровень радиации в открытом космосе был примерно на 20 процентов выше, чем во время полета Curiosity. Ученые связывают это расхождение с тем, что уровень солнечной активности в этот период был минимальным, что повысило частоту «обстрела» зонда и всех планет космическими лучами из межзвездной среды. Нечто похожее было зафиксировано зондом LRO во время двух последних солнечных минимумов.

В среднем, космонавт, путешествующий примерно год к Марсу, получит примерно 0,7 зиверта ионизирующего излучения (около 73 рентген). Космонавты на борту МКС получают примерно 0,3 зиверта в год, а на Земле годовая доза, которую получает человек, составляет около 2,4 миллизиверта. Как показывают расчеты ученых, одно путешествие к Марсу по самому быстрому маршруту «съест» чуть больше половины от максимальной общей дозы радиации, допустимой для космонавтов за всю карьеру.

Что интересно, уровень радиации на орбите Марса был еще выше, причем уровень облучения очень сильно зависел от того, закрывала ли планета «Экзомарс» от солнечного ветра.

Замеры на самой поверхности планеты пока еще не были проведены европейскими и российскими учеными – Митрофанов и его коллеги планируют осуществить их при помощи дозиметра «Люлин-МЛ», который будет установлен на посадочной платформе для европейского марсохода «Пастер», сейчас в НПО Лавочкина.

Сергей Кузнецов

© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары