Вконтакте Facebook Twitter Лента RSS

Медицинская биология. Методы генетики Что позволяет выявить цитогенетический метод

Клиническая генетика. Е.Ф. Давыденкова, И.С. Либерман. Ленинград. «Медицина». 1976 год.

ВЕДУЩИЕ СПЕЦИАЛИСТЫ В ОБЛАСТИ ГЕНЕТИКИ

Амелина Светлана Сергеевна - профессор кафедры по курсу генетики и лабораторной генетики, доктор медицинских наук. Врач генетик высшей квалификационной категории

Дегтерева Елена Валентиновна - ассистент кафедры по курсу генетики и лабораторной генетики, врач-генетик первой категории

Редактор страницы: Крючкова Оксана Александровна

К цитогенетическим методам, применяемым в клинике, относятся определение полового хроматина (X- и У-хроматина) в интерфазных ядрах различных тканей, морфологических особен­ностей хроматина в нейтрофилах периферической крови (бара­банные палочки), а также исследование хромосом на стадии метафазы митоза для определения кариотипа.

Исследование полового хроматина

В 1949 г. Ваrr и Bertram описали в интерфазных ядрах компактное скопление хроматина в виде темноокрашенного тельца, получившее название полового хроматина (sex chromatin). В норме он встречается у женщин, у мужчин он отсутствует или представ­лен в незначительном количестве. У мужчин, имеющих одну Х-хромосому, она всегда активна, у женщин активной является только одна из двух Х-хромосом, вторая находится в неактивном, спирализованном состоянии. Она образует тельце полового хро­матина, которое определяется в интерфазном ядре клетки женского организма. Был разработан простой и быстрый метод определения Х-хроматина в мазках слизистой полости рта с окраской препа­ратов ацетоорсеином. Быстрота и легкость выполнения привели к широкому применению этого метода в медицинской практике.

Метод, до настоящего времени имевшийся в нашем распоряже­нии, выявлял только Х-хроматин, т. е. хроматин, образованный инактивированной Х-хромосомой. С момента опубликования иссле­дований Caspersson с соавт. (1969, 1970) появились возможности определения У-хроматина при помощи люминесцентно-микроско­пического исследования. Работами Zech (1969) было показано, что часть длинного плеча У-хромосомы флюоресцирует при окраши­вании акрихин-ипритом. Затем Pearson с сотр. (1970) обнаружили, что в интерфазном ядре клеток мужчин имеется флюоресцирующее тельце, названное ими F-тельцем, которое у мужчин с кариотипом ХУУ имеется в двойном количестве. Таким образом, появился

простой метод определения У-хроматина в буквальных соскобах, который может быть применен для клинических целей. Это очень удобно для популяционных исследований, так как полное карио- типирование является сложным и трудоемким.

Таким образом, в настоящее время необходимо дифференци­ровать X-хроматин и У-хроматин.

Исследование Х-хроматина. Х-хроматин может быть определен в различных тканях организма: в клетках кожи, слизистой оболочки рта, уретры, влагалища, в клетках крови, в клетках волосяной луковицы, в эпителиальных клетках осадка мочи, в амниотической жидкости и др. Он может быть исследован и в посмертном материале, например в клетках почечных канальцев мертворожденных детей (Н_ П. Бочков и сотр., 1966).

Наиболее распространенным является определение полового хроматина в буккальных мазках по методу Sanderson и Stewart (1961) с одномоментной фиксацией и окраской препаратов ацетоорсеином.

Соскоб берется металлическим шпателем с внутренней поверх­ности щеки, наносится равномерным слоем на предметное стекло, окрашивается одной каплей 1,5% или 2% раствора уксуснокислого ацетоорсеина. Раствор красителя готовится следующим образом: в 45 мл ледяной уксусной кислоты растворяется 1,5-2 г орсеина; раствор нагревается до появления паров, добавляется 55 мл дистиллированной воды и после охлаждения фильтруется. Затем препарат накрывается покровным стеклом, на которое произво­дится легкое надавливание через сложенную в 3-4 слоя марлю или фильтровальную бумагу для удаления лишней краски. На приготовление препарата требуется 2-3 мин. Если препараты просматриваются не сразу, то края покровного стекла покрыва­ются парафином для предупреждения от высыхания. В таком виде препараты можно сохранять в холодильнике до 2 суток.

Ацетоорсеин окрашивает Х-хроматин в темно-фиолетовый цвет, а нуклеоплазму - в бледно-розовый.

Для более контрастного окрашивания Х-хроматина или при отсутствии ацетоорсеина в нашей лаборатории с успехом приме­няется метод окраски, разработанный сотрудником нашей лабо­ратории- А. М. Захаровым. Он основан на метахроматическом окрашивании гетерохроматина красителями тиозиновой группы: метиленовый синий, азур I. Эти красители отечественного про­изводства обычно имеются в достаточном количестве в любой лаборатории.

Применяется 0,2-0,5% раствор одного из вышеуказанных красителей в дистиллированной воде. Разведение проводится из расчета 20-50 мг красителя на 10 мл Н20. Для приготовления одного препарата требуется 2-3 капли раствора. Требуется довести раствор до pH 4,3-4,7 несколькими каплями фосфатного буфера. Употребление буфера не всегда обязательно, так как при растворении краситель сам снижает значение pH до нужной ве­личины. Приготовление препаратов проводится таким же образом, как при ацетоорсеиновом методе.

В отличие от орсеинового метода окрашивание производится без одновременной фиксации кислотой, что предотвращает сморщивание части клеток, поэтому количество Х-хроматина при подсчете превышает в среднем на 5% то количество, которое получается при ацетоорсеиновом методе. При этом методе окрашивания цитоплазма клеток эпителия бесцветна, ядра приобретают бледно-фиолетовый цвет, тельце полового хроматина окрашивается более интенсивно и имеет красноватый цвет.

Для подсчета полового хроматина используются микроскопы МБИ- 3 или МБИ-6 с иммерсионными объективами. Подсчитывается не менее 100 пригодных для анализа ядер, при этом учитываются ядра с ровным контуром, гладкой оболочкой и половым хроматином, прилегающим к ядерной оболочке. Просматривается обычно несколько полей зрения в разных местах препарата.

По количеству телец Х-хроматина можно судить о количестве Х-хромосом. Число Х-хромосом всегда на единицу больше числа телец полового хроматина.

В последние годы получило распространение определение полового хроматина в клетках опухолей. Обнаруживается несоответствие между полом больного и «клеточным полом» опухоли. Выявляется также зависимость между содержанием полового хроматина и чувствительностью опухоли к гормонотерапии.

Исследование У-хроматина. Определение У-хроматина в ядрах клеток на стадии интерфазы может быть осуществлено при применении флюорохромных красителей, таких как акрихин или акрихин-иприт с последующей люминесцентной микроскопией. Таким образом могут быть идентифицированы хромосомы на стадии метафазы митоза, а, также хроматин в ядрах клеток. Акрихин-иприт окрашивает дистальные участки длинных плеч У-хромосомы в метафазе. Кроме того, маленькие округлые флюоресцирующие
тельца наблюдаются в интерфазных ядрах. Они встречаются у лиц мужского пола и могут рассматриваться как У-хроматин. При хромосомных нарушениях типа ХУУ наблюдается два тельца У-хроматина (рис 5). Большие популяционные исследования показали, что наиболее удобными для выявления У-хроматина

Рис. 5. Два флюоресцирующих тельца У-хроматина в интерфазном ядре больного с синдромом 47, XYY.
Окраска акрихин-ипритом.

являются эпителиальные клетки слизистой щеки и лимфоциты периферической крови (Pearson и сотр., 1970; I’olani и Multon, 1971; Robinson, 1971).

Сейчас усиленно изучаются особенности F-хроматина в норме и патологии, вариации в связи с возрастом, различным состоянием организма, корреляцией с размером флюоресцентной части метафазной У-хромосомы и др.

Соскоб эпителия слизистой щеки, полученный при помощи шпателя, наносится ровным слоем на покровное или предметное стекло. Высушенные мазки фиксируют в абсолютном метиловом спирте в течение 2 мин, а затем проводят через нисходящий ряд спиртов (этиловый спирт), выдерживая по 30 с в каждом, до воды. Мазок помещают в буфер Мак-Илвейна (pH 7,0) на 8 мин при 8°. Мазки окрашивают в течение 8-10 мин в 0,005% растворе акри­хин-иприта. Затем препараты споласкивают в свежей водопро­водной воде и дифференцируют в двух-трех порциях цитратно- фосфатного буфера Мак-Илвейна по 1-2 мин и заключают в смесь вода-глицерин (1: 1). Излишки среды тщательно удаляют фильтровальной бумагой и края покровного стекла заливают парафином.

Препараты анализируют под люминесцентным микроскопом (МЛ-2 или МЛ-3, лампа ДРШ 250 с фильтром ФС-2 и СС-2 и барьер­ным фильтром ЖС 18 + ЖЗС 19).

В ядрах клеток буквального эпителия У-хроматин обнаружи­вается в виде ярко светящихся телец на фоне умеренного свече­ния остального хроматина ядра. Общее количество клеток с У-хроматином колеблется от 33 до 92%. Размер одиночного тельца У-хроматина около 0,25-0,8 мкм в диаметре. Но У-хроматин может быть представлен в виде одной, двух, трех и более мелких глыбок в ядре. Интерфазный У-хроматин коррелируется с вариа­циями в размерах флюоресцирующих участков У-хромосом в метафазных пластинках.

Исследование У-хроматина люминесцентно-микроскопическим методом в комплексе с методом определения Х-хроматина дает возможность выявлять набор половых хромосом без кариотипирования. Исследование эндоцервикальных мазков с помощью флюоресцентной методики можно использовать для пренатального определения пола.

Новейшее медицинское оборудование и современные методики позволяют клиентам частных центров узнать о возможных патологиях в развитии человека еще до его рождения. Цитогенетический метод исследования – анализ, с помощью которого можно установить имеющиеся изменения в хромосомном аппарате. В первую очередь выясняются аномалии в самом наборе хромосом, а также наличие разнообразных структурных перестроек. Такое цитогенетическое исследование чаще всего применяется для своевременной диагностики врожденных и опасных приобретенных заболеваний.

Так, например, в онкологии и, смежной с ней, онкогематологии очень важно вовремя установить тип хромосомных транслокаций, характерный для определенных опухолевых клеток. Установление их наличия позволяет быстро и максимально правильно подобрать тактику лечения. Подобная процедура сложная и многоступенчатая, а результат полностью зависит от опытности персонала и качества оборудования, поэтому не нужно рисковать своей жизнью и пытаться сэкономить на данном анализе. Для каждой отдельной задачи может потребоваться отдельное исследование, поэтому выполнение анализа верно и «с первого раза» очень важно для пациента.

Если необходимо проанализировать не всю хромосомную структуру, а только отдельные последовательности ДНК или РНК, используется молекулярно цитогенетическое исследование . Оно позволяет изучить те или иные гены, а, благодаря своей высокой точности – часто применяется для обнаружения минимальных проявлений остаточных болезней. Например, этот способ рекомендуют для раннего обнаружения опухолевых рецидивов: мелкие лейкемические клетки просто нельзя выявить другими способами на таких ранних сроках. Обычно цитогенетическое исследование крови проводится на основе способа полимеразной цепной реакции. Такая технология позволяет получить большое количество идентичных копий исследуемого участка ДНК. Наличие множества копий открывает дополнительные возможности исследовать последовательность ДНК, как новейшими, так и традиционными способами.

Цитогенетическое исследование кариотип

К стандартным процедурам цитогенетического анализа крови относится кариотипирование. С его помощью выявляют нарушения в количестве и структуре хромосом. Очень важно отдать предпочтение клинике, с качественным оборудованием и расходными материалами. Для анализа кариотип, забор клеток крови держат в питательной среде на протяжении 3 суток. Затем происходит фиксация полученного материала и изучение под микроскопом. На данных этапах нужно тщательно проследить за качеством специальных окрашивающих препаратов и уровнем подготовки персонала.

Существует также цитогенетическое исследование плода , его назначают при различных подозрениях на генетические отклонения или при неправильном раннем внутриматочном развитии. Частные медицинские центры могут обеспечить надлежащий уровень проведения подобных исследований и выявить различные хромосомные патологии, пороки развития, бесплодие или невозможность выносить ребенка на ранних сроках беременности или до нее.

Цитогенетическое исследование костного мозга назначают пациентам с различными видами злокачественных заболеваний в органах системы кроветворения. Во время этого анализа оценивается не менее 20 клеток. Нужно учитывать, что забор материала для исследования должен производиться только в специальном медицинском учреждении, имеющем разрешение на проведение подобных опасных вмешательств.

На ранних сроках беременности может потребоваться цитогенетическое исследование хориона . Его проводят на 10-14 неделе беременности с целью исключения хромосомных болезней плода, таких как синдром Дауна, болезнь Хантера, b-талассемия и еще около 50 различных отклонений и заболеваний. Обратившись в частный центр, клиент может быть уверен в качестве обслуживания и достоверности полученных на современном оборудовании результатов анализов.

Цитогенетика – раздел генетики, изучающий закономерности наследственности и изменчивости на уровне клетки и субклеточных структур, главным образом хромосом. Цитогенетические методы предназначены для изучения структуры хромосомного набора или отдельных хромосом. Основа цитогенетических методов - микроскопическое изучение хромосом человека. Микроскопические методы исследования хромосом человека начали использоваться в конце XIX века. Термин «цитогенетика» введен в 1903 г. Уильямом Саттоном.

Цитогенетические исследования стали широко использоваться с начала 20 -х гг. XX в. для изучения морфологии хромосом человека, подсчета хромосом, культивирования лейкоцитов для получения метафазных пластинок. В 1959 г. французские ученые Д. Лежен, Р. Тюрпен и М. Готье установили хромосомную природу болезни Дауна. В последующие годы были описаны многие другие хромосомные синдромы, часто встречающиеся у человека. В 1960 году Р. Мурхед с соавт. разработали метод культивирования лимфоцитов периферической крови для получения метафазных хромосом человека, что позволило обнаруживать мутации хромосом, характерные для определенных наследственных болезней.

Применение цитогенетических методов: изучение нормального кариотипа человека, диагностика наследственных заболеваний, связанных с геномными и хромосомными мутациями, исследование мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др. Обьектом цитогенетичеких исследований могут быть делящиеся соматические, мейотические и интерфазные клетки.

ЦИТОГЕНЕТИЧЕСКИЕ МЕТОДЫ Световая микроскопия Электронная микроскопия Конфокальная микроскопия Люминесцентная микроскопия Флуоресцентная микроскопия

Показания для проведения цитогенетических исследований Подозрение на хромосомную болезнь по клинической симптоматике (для подтверждения диагноза) Наличие у ребенка множественных ВПР, не относящихся к генному синдрому Многократные спонтанные аборты, мертворождения или рождения детей с ВПР Нарушение репродуктивной функции неясного генеза у женщин и мужчин Существенная задержка умственного и физического развития у ребенка

Пренатальная диагностика (по возрасту, в связи с наличием транслокации у родителей, при рождении предыдущего ребенка с хромосомной болезнью) Подозрение на синдромы, характеризующиеся хромосомной нестабильностью Лейкозы (для дифференциальной диагностики, оценки эффективности лечения и прогноза лечения) Оценка мутагенных воздействий различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др.

В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом.

Цитогенетичекие исследования соматических клеток Получение препаратов митотических хромосом Окраска препаратов (простые, дифференциальные и флуоресцентные) Молекулярно-цитогенетические методы – метод цветной гибридизации in situ (FISH)

К цитогенетическим методам, применяемым в клинической практике, относятся: - классические методы кариотипирования; - молекулярно-цитогенетические методы. До недавнего времени диагностика хромосомных болезней базировалась на использовании традиционных методов цитогенетического анализа.

Для изучения хромосом чаще всего используют препараты кратковременной культуры крови, а также клетки костного мозга и культуры фибробластов. Кровь с антикоагулянтом центрифугированиют для осаждения эритроцитов, а лейкоциты инкубируют в культуральной среде 2 -3 дня. К образцу крови добавляют фитогемагглютинин, так как он ускоряет агглютинацию эритроцитов и стимулирует деление лимфоцитов. Наиболее подходящая фаза для исследования хромосом - метафаза митоза, поэтому для остановки деления лимфоцитов на этой стадии используют колхицин. Добавление этого препарата к культуре приводит к увеличению доли клеток, находящихся в метафазе, то есть в той стадии клеточного цикла, когда хромосомы видны лучше всего. Каждая хромосома реплицируется и после соответствующей окраски видна в виде двух хроматид, прикреплённых к центромере, или центральной перетяжке. Затем клетки обрабатывают гипотоническим раствором хлорида натрия, фиксируют и окрашивают. Для окраски хромосом чаще используют краситель Романовского -Гимзы, 2% ацеткармин или 2% ацетарсеин. Они окрашивают хромосомы целиком, равномерно (рутинный метод) и могут быть использованы для выявления численных аномалий хромосом

Денверская классификация хромосом человека (1960). Группа А (1 -3) – три пары самых крупных хромосом: две метацентрические и 1 субметацентрическая. Группа В – (4 -5) – две пары длинных субметацентрических хромосом. Группа С (6 -12) – 7 пар субметацентрических аутосом среднего размера и Х-хромосома. Группа D (13 -15) – три пары средних акроцентрических хромосом. Группа E (16 -18) – три пары метацинтрическая и субметацентрические хромосомы. Группа F (19 -20) – две пары маленьких метацентрических хромосом. Группа G (21 -22 и Y) – две пары мелких акроцентрических хромосом и Y-хромосома.

1. Рутинная (равномерная) окраска 2. Используется для анализа числа хромосом и выявления структурных нарушений (аберраций). При рутинной окраске достоверно можно идентифицировать только группу хромосом, при дифференциальной – все хромосомы

Идиограмма хромосом человека в соответствии с Денверской и Парижской классификациями A B C E D F G

Методы дифференциальной окраски хромосом Q-окрашивание - окрашивание по Касперссону акрихинипритом с исследованием под флуоресцентным микроскопом. Чаще всего применяется для исследования Y-хромосом. G-окрашивание - модифицированное окрашивание по Романовскому - Гимзе. Чувствительность выше, чем у Qокрашивания, поэтому используется как стандартный метод цитогенетического анализа. Применяется при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы) R-окрашивание - используется акридиновый оранжевый и подобные красители, при этом окрашиваются участки хромосом, нечувствительные к G-окрашиванию. C-окрашивание - применяется для анализа центромерных районов хромосом, содержащих конститутивный гетерохроматин. T-окрашивание - применяют для анализа теломерных районов хромосом.

Участки сильной и слабой конденсации по длине хромосомы специфичны для каждой хромосомы и имеют разную интенсивность окраски.

Флюоресцентная гибридизация in situ (Fluorescence in situ hybridization, FISH) - спектральное кариотипирование, состоящее в окрашивании хромосом набором флуоресцентных красителей, связывающихся со специфическими областями хромосом. В результате такого окрашивания гомологичные пары хромосом приобретают идентичные спектральные характеристики, что существенно облегчает выявление таких пар и обнаружение межхромосомных транслокаций, то есть перемещений участков между хромосомами - транслоцированные участки имеют спектр, отличающийся от спектра остальной хромосомы.

Флюоресцентная гибридизация in situ (Fluorescence in situ hybridization, FISH) Флюоресце нтная гибридиза ция in situ, или метод FISH - цитогенетический метод, который применяют для детекции и определения положения специфической последовательности ДНК на метафазных хромосомах или в интерфазных ядрах in situ. При флюоресцентной гибридизации in situ используют ДНК-зонды (ДНК-пробы), которые связываются с комплементарными мишенями в образце. В состав ДНК-зондов входят нуклеозиды, меченные флюорофорами (прямое мечение) или такими конъюгатами, как биотин или дигоксигенин (непрямое мечение).

Определение транслокации t(9; 22)(q 34; q 11) при хроническом миелолейкозе методом FISH ген ABL 1 (хромосомa 9) объединяется с геном BCR (хромосомы 22) – образуется химерный ген BCR-ABL 1. Метафазная пластинка с филадельфийской хромосомой. Хромосомы окрашены в синий цвет, локус ABL 1 - красный цвет, локус BCR - зелёный цвет. Вверху слева - хромосома с перестройкой, отмечена красно-зеленой точкой.

Многоцветная FISH - спектральное кариотипирование, состоящее в окрашивании хромосом набором флуоресцентных красителей, связывающихся со специфическими областями хромосом. В результате такого окрашивания гомологичные пары хромосом приобретают идентичные спектральные характеристики, что существенно облегчает выявление таких пар и обнаружение межхромосомных транслокаций, то есть перемещений участков между хромосомами - транслоцированные участки имеют спектр, отличающийся от спектра остальной хромосомы.

Кариотип 46, XY, t(1; 3)(p 21; q 21), del(9)(q 22) Транслокация между 1 -й и 3 -й хромосомами, делеция 9 -й хромосомы. Маркировка участков хромосом дана как по комплексам поперечных меток (классическая кариотипизация, полоски), так и по спектру флуоресценции (цвет, спектральная кариотипизация).

Цитогенетическое исследование - это микроскопический анализ хромосом, результаты которого весьма важны для постановки диагноза, классификации, лечения и научного исследования заболеваний системы крови, прежде всего - онкогематологических. Значение цитогенетических методов для диагноза и лечения определяется доступностью опухолевых клеток для кариотипирования и их гетерогенностью, а с научной точки зрения - возможностью изучения изменений в структуре и функции генетических локусов, ассоциированных со злокачественной трансформацией.

Морфология хромосом сильно варьирует во время клеточного цикла. Для микроскопического анализа хромосомы должны быть визуализированы как дискретные структуры. Наилучшим образом это достигается на стадии прометафазы митоза, когда каждая хромосома видна как две идентичные хроматиды, и особенно на стадии метафазы, когда хромосомы максимально конденсированы и располагаются в одной плоскости в центре клетки отдельно одна от другой.
Нормальные клетки человека содержат 22 пары аутосом и одну пару половых : две Х-хромосомы у женщин и по одной копии половых хромосом (X и Y) у мужчин.

Для цитогенетического анализа лейкозов , миелодиспластических синдромов и хронических миелопролиферативных заболеваний исследуют клетки костного мозга. При невозможности их получения может быть исследована кровь (если она содержит бласты). Цитогенетический анализ лимфом выполняется в клетках ткани лимфатического узла. Культивирование клеток из опухоли повышает митотический индекс (пропорцию клеток, находящихся в фазе митоза) и способствует пролиферации злокачественных клеток.

Сравнительное кариотипирование нормальных клеток проводят в Т-лимфоцитах периферической крови, которые предварительно культивируют в среде с митогеном растительного происхождения - фитогемагглютинином.

Окрашивание хромосом в гематологии

В конце 1960-х годов была разработана методология дифференциального окрашивания метафазных хромосом , а в 1971 г. создана номенклатура хромосомных сегментов, позволяющая точно описывать хромосомные аномалии. Позднее были внедрены методики окрашивания менее конденсированных и, соответственно, более длинных профазных и прометафазных хромосом, которые обладают более высоким разрешением, так как позволяют визуализацию 500-2000 сегментов (метафазное окрашивание визуализирует только 300 сегментов).

Достаточно большое количество профазных и прометафазных клеток для анализа получают путем синхронизации клеточного цикла, культивируя клетки в среде, содержащей антиметаболит (например, метотрексат), который ингибирует синтез ДНК. Подавление синтеза ДНК останавливает клеточный цикл в интерфазе. Затем клетки переносят в среду без метотрексата, обогащенную тимидином, где они одновременно входят в фазу митоза. Обработка клеточной культуры колхицином останавливает митоз одновременно во всех клетках на стадии профазы или прометафазы.

Первая стойкая хромосомная аномалия при злокачественной опухоли человека была выявлена в 1960 г. у больных хроническим миелолейкозом и получила название филадельфийской хромосомы (Ph), по имени города, в котором было сделано это открытие. Применение технологии хромосомного окрашивания позволило выявить множество хромосомных аномалий, большая часть которых встречается при онкогематологических заболеваниях. Некоторые красители окрашивают различные участки хромосом с вариабельной интенсивностью в зависимости от структуры хроматина в этих участках, их нуклеотидного и белкового состава.

В результате такого окрашивания получают уникальный паттерн чередования светлых и темных поперечных полос, специфичный для каждой хромосомы.

В настоящее время существуют несколько видов дифференциального окрашивания хромосом . При Q-окрашивании акрихин-ипритом (quinacrine) или акрихиндигидрохлоридом выявляется особый тип флюоресценции каждой хромосомы с образованием Q-исчерченности (Q-banding) - поперечных флюоресцентных полос, называемых Q-полосами (Q.-bands). Это позволяет идентифицировать отдельные хромосомы. Анализ Q-полос выполняют с помощью флюоресцентного микроскопа.

Схема анализа ДНК методом FISH

При окрашивании по Гимзе (G-banding) хромосомы приобретают вид серии темных и светлых полос или бэндов (bands). G-окрашивание применяется чаще, чем Q-окрашивание, так как анализ выполняется с помощью светового микроскопа, а G-полосы, в отличие от Q-полос, не выцветают со временем. Наиболее широко применяется методика, называемая GTG-окрашиванием (G bands by trypsin using Giemsa), с предварительной обработкой трипсином.

R-бэндинг (обработка хромосом горячим спиртовым раствором перед окрашиванием по Гимзе) выявляет полосы, которые обратны G-полосам и называются R-полосами (reverse of G bands).

Помимо Q-, G- и R-окрашивания , позволяющих выявлять полосы вдоль всей длины хромосомы, существуют методики, специализированные для исследования отдельных хромосомных структур, в том числе конститутивного гетерохроматина (С-окрашивание - от англ. constitutive), теломерного района (Т-окрашивание) и района ядрышкового организатора (NOR-окрашивание - от англ. nucleolus organizing region). Размеры и положение С-полос уникальны для каждой хромосомы, но преимущественно они включают центромерныи район и используются при исследовании хромосомных транслокаций, вовлекающих центромерные районы хромосом.

Цитогенетический анализ опухолевых клеток затруднен в связи с неясной морфологией хромосом и слабой различимостью полос. Если в исследование взяты наиболее удобные для анализа метафазные пластинки, образец может быть ошибочно охарактеризован как цитогенетически нормальный.

С развитием методов рекомбинантной ДНК стало возможным использование гибридизации in situ для определения местоположения на хромосомах или в клеточном ядре любой ДНК- и РНК-последовательности. С ее помощью можно изучать и диагностировать онкологические и наследственные генетические болезни. Молекулярная гибридизация in situ является важным инструментом цитогенетических исследований, позволяет выявлять хромосомные перестройки, идентифицировать маркерные хромосомы, проводить быстрое кариотипирование клеточных линий. Важно, что подобный анализ можно проводить не только на метафазных хромосомах, но и на интерфазных ядрах.

Разрешающая способность «интерфазной цитогенетики» на два порядка выше, чем классической цитогенетики.

Несмотря на многоцелевое использование молекулярной гибридизации ДНК-ДНК (РНК) in situ , все модификации метода выполняются в соответствии с общими принципами. Существуют несколько вариантов, которые включают в себя несколько этапов: подготовка и мечение ДНК (РНК)-зонда, приготовление препаратов хромосом, собственно гибридизация, детекция гибридных молекул.

В 1980-х годах цитогенетическая методология обогатилась молекулярно-цитогенетическим методом, называемым флюоресцентной гибридизацией in situ (fluorescence in situ hybridization , FISH ), который вскоре стал наиболее популярным. Суть этого метода заключается в гибридизации ДНК-зондов к специфическим последовательностям ДНК, меченных флюорохромами, с метафазными или интерфазными хромосомами, которые визуализируются флюоресцентной микроскопией. Определение нуклеотидной последовательности методом FISH выполняется непрямым способом, путем гибридизации синтетического олигонуклеотида (зонда) с анализируемой ДНК (называемой также матричной ДНК или ДНК-мишенью).

Если зонд синтезирован с включением флюоресцентных или антигенных молекул, которые распознаются флюоресцирующими антителами , становится возможной визуализация относительного положения зонда на анализируемой ДНК.

Флюорохром может быть связан с ДНК ковалентно (прямое мечение) или посредством иммуноцитохимических реакций, когда ДНК-зонд метят гаптеном (биотин, дигоксигенин), а флюорохром связан с алкалоидом авидином (стрептавидином), обладающим сильным сродством к биотину (или с антителами против биотина или дигоксигенина). При использовании гаптенов возможна амплификация флюоресцентного сигнала с помощью биотинилированных антител к авидину и вторичных антител, специфичных предыдущему слою антител и окрашенных флюорохромом.

Для амплификации флюоресцентного сигнала применяется метод «иммунных сэндвичей». Например, на препарат, изображенный на схеме, наносят биотинилированные антитела к авидину, а затем снова комплекс авидин-флюоресцеин. При необходимости цикл может быть повторен. Антитела в свою очередь выявляются с помощью ферментативного (например, авидинпероксидазы) или флюоресцентного детектора.

Метод FISH предназначен для выявления:
1) гибридных клеток;
2) транслокаций и других, в том числе числовых, хромосомных аномалий;
3) меченых хромосом в интерфазных и метафазных клетках.

Высококонтрастная флюоресцентная гибридизация достигается благодаря использованию флюоресцентных красителей разного цвета. С помощью двуцветной FISH выявляются тонкие структурные аномалии, например хромосомные транслокации, в том числе и неразличимые при дифференциальном окрашивании.

В настоящее время возможно выполнение многоцветной гибридизации in situ для одновременного окрашивания всех хромосом в сложном кариотипе с множественными числовыми и структурными аномалиями. Комбинация разных модифицирующих агентов и флюорохромных красителей позволяет одновременно выявлять несколько последовательностей ДНК в одном ядре (флюоресцеин дает зеленую флюоресценцию, техасский красный и родамин - красную, гидроксикумарин - голубую и т. д.). Сочетание пяти флюорохромов в разных пропорциях и компьютерный анализ изображений позволяет одновременно окрасить разным цветом все хромосомы и визуализировать 27 различных ДНК-зондов, которые служат уникальной меткой для каждой хромосомы. Эта методика называется многоцветной FISH (multicolor, или multiplex, fluorescence in situ hybridization, M-FISH).

Значение цитогенетических методов неодинаково при разных онкогематологических заболеваниях. Миелоидные клетки обычно легко кариотипируются при дифференциальном окрашивании, и FISH лишь подтверждает результаты рутинной цитогенетики. Лимфоидные клетки у больных хроническим лимфолейкозом и, особенно, множественной миеломой кариотипировать значительно сложнее из-за низкого уровня пролиферации (даже при использовании В-клеточных митогенов). В этом случае FISH демонстрирует в несколько раз большую частоту анеуплоидии, чем обычные цитогенетические методики.

Клиническое значение цитогенетических исследований

Диагноз . Потомство клетки с приобретенной цитогенетической аномалией может иметь пролиферативное преимущество и давать начало клону - клеточной популяции, происходящей от одной клетки-предшественницы. Обнаружение клональных хромосомных аномалий способствует постановке диагноза клонального поражения костного мозга. Например, цитогенетический анализ позволяет установить диагноз миелодиспластического синдрома у пациентов с умеренной цитопенией или при наличии в аспирате костного мозга минимально выраженных качественных нарушений гемопоэза.

Омская Государственная Медицинская Академия

Кафедра пропедевтики детских болезней и поликлинической педиатрии

Утверждаю:

Зав. кафедрой Лукьянов А.В.

“_____” 20__ г.

Медицинская генетика

Методы медицинской генетики – цитогенетический

ОМСК – 2001

УТВЕРЖДАЮ

Зав. кафедрой

“___” 20___ г.

МЕТОДИЧЕСКАЯ РАЗРАБОТКА к практическому занятию для студентов IV курса педиатрического факультета

Тема занятия : Методы медицинской генетики – Цитогенетический

Актуальность темы : Значительная часть множественных врожденных пороков развития, нарушений полового и психомоторного развития у детей связана с изменениями числа или структуры хромосом. Успехи в выделении самостоятельных хромосомных синдромов, в их диагностике в каждом конкретном случае, а также профилактике и лечении невозможны без изучения структуры и функций хромосом, основных методов их исследования.

Цель занятия : Изучить строение и классификацию хромосом человека, основные методы исследования – кариотипирование и анализ полового хроматина. Определить основные синдромы, причиной которых являются хромосомные аномалии и показания для цитогенетического метода исследования.

Студент должен знать:

    Строение, функцию и классификацию хромосом человека (биология).

    Числовые и структурные аномалии хромосом.

    Полиморфизм хромосомных синдромов (патофизиология).

    Методы цитогенетического исследования (биология).

Студент должен уметь:

    Выявить фенотипические признаки хромосомных синдромов у детей.

    Определить показания для исследования кариотипа и полового хроматина.

    Интерпретировать заключения врача–цитогенетика о наличии хромосомной патологии у пробанда.

Оснащение занятия :

    таблицы, слайды, фотографии, ситуационные задачи, препараты метафазных пластинок хромосом человека, препараты буккального эпителия, наборы реактивов, световой микроскоп.

Продолжительность занятия : 140 минут

Место проведения занятия : учебная комната, цитогенетическая лаборатория

Методика проведения занятия :

1. Проверка присутствующих 10 мин

2. Формулировка темы 10 мин

3. Решение ситуационных задач 30 мин

4. Обсуждение материала 65 мин

5. Ответы на вопросы 10 мин

6. Заключение преподавателя и задание на дом 10 мин

Реферат

Цитогенетика человека занимает одно из важнейших мест в медицинской генетике. Объектом цитогенетических исследований служа хромосомы (греч. chroma – ‘цвет’ и soma – ‘тело’; В. Вальдеер, 1888 г) – структурные элементы ядра клетки, заключающие в себе основную часть наследственной информации. В зависимости от функциональной активности и стадии клеточного цикла в составе хромосом ДНК может быть уложена с различной плотностью. События, развертывающиеся в клетке в процессе митотического деления протекают в закономерной последовательности и составляют пять сменяющихся стадий: интерфаза, профаза, метафаза, анафаза и телофаза. Митотические хромосомы образуются в клетке во время митоза, ДНК в них уложена чрезвычайно плотно. Благодаря этому обеспечивается равномерное распределение генетического материала между дочерними клетками при митозе. Интерфазные хромосомы (хроматин) активно участвуют в процессах транскрипции и репликации.

Форма метафазных хромосом определяется положение первичной перетяжки – центромеры, которая делит ее на две равных или неравных по длине плеча – теломеры. Короткое плеча хромосомы обозначают литерой "p ", длинное – "q ". Выделяют метацентрические, субметацентрические и акроцентрические хромосомы.

Соматические клетки человека имеют постоянный двойной диплоидный (2n ) набор хромосом или кариотип, который составлен из двух одинарных гаплоидных наборов (n ), полученных от родителей. В соматических клетках человека диплоидный набор составляют 46 хромосом (22 пары аутосом и пара половых хромосом). Нормальный набор половых хромосом у женщин представлен ХХ и у мужчин – XY хромосомами. В половых клетках содержится гаплоидный набор хромосом.

Классификация равномерно окрашенных хромосом выработана на международных совещаниях в Денвере (1960), Лондоне (1963) и Чикаго (1966). Хромосомы располагаются в порядке уменьшения их длины. Все пары аутосом нумеруют арабскими цифрами от 1 до 22. Половые хромосомы обозначают латинскими буквами X и Y и при кариотипировании помещают в конце раскладки. Расположенные в указанном порядке, все аутосомы распределяются на семь групп, которые различаются между собой по длине и форме составляющих их членов и обозначаются буквами английского алфавита от A до G. В группе A (1–3) оказываются три пары самых крупных хромосом: 1, 3 – метацентрические хромосомы и 2 – субметацентрическая. Группа B (4–5) включает 2 пары длинных субметацентрических хромосом. Группа С (6–12) объединяет семь пар субметацентрических аутосом и не отличающуюся от них Х‑хромосому. В группу D (13–15) входят три пары акроцентрических хромосом, а в группу Е (16–18) – три пары субметацентрических хромосом. Группа F (19–20) содержит две пары маленьких метацентрических хромосом, группа G (21–22) – две пары самых мелких акроцентрических хромосом. Y‑хромосома выделяется как самостоятельная.

С появлением методов дифференциальной окраски (G, Q, C) появилась возможность идентифицировать хромосомы по характерному для каждой пары чередованию светлых (эухроматин) и темных (гетерохроматин) полос, расположенных симметрично в сестринских хроматидах (Париж, 1971).

Каждая хромосома дифференцирована на 2 типа различных районов, так называемые эу- и гетерохроматические районы. Эухроматические, активные районы – содержат весь основной комплекс генов ядра, т.е. участков хромосомной нити, дифференциально контролирующих развитие признаков организма. Гетерохроматические районы образуют дистальные и проксимальные участки хромосомной нити, а также входят в состав внутренних ее частей. Роль гетерохроматических районов хромосом, эволюционно закрепленных в их структуре, в настоящее время активно изучается.

Среди геномных мутаций выделяют:

    полиплоидии – увеличение количества хромосом, кратное гаплоидному числу n (3n, 4n и т.д. );

    анеуплоидии – отклонение количества хромосом от эуплоидных чисел. Среди анеуплоидий выделяют:

    моносомии (2n–1 ) – отсутствие одной хромосомы для соответствующей пары,

    трисомии (2n+1 ) – наличие 3‑х гомологичных хромосом вместо обычной пары;

    мозаицизм – присутствие более одной популяции клеток с разным числом хромосом у одного и того же человека.

Структурные перестройки могут быть сбалансированными , когда порядок расположения сегментов в хромосомах нарушен, но в целом, количества генетического материала не меняется:

    инверсии –поворот участка хромосомы на 180°,

    транслокации – обмен участками хромосом; могут быть реципрокными при взаимном обмене участками между двумя негомологичными хромосомами и робертсоновскими – транслокации между двумя акроцентрическими хромосомами.

Несбалансированные перестройки возникают при утрате или избытке хромосомного материала:

    делеции – утрата части хромосомы;

    дупликации – удвоение участка хромосомы;

    изохромосомы – хромосомы, состоящие из двух коротких плечей.

Увеличение или потерю хромосомного материала обозначают соответственно знаком "+" или "–", помещаемым перед номером хромосомы (47 ,XY +21 ).

Методы цитогенетического анализа делятся на прямые и непрямые. Непрямые методы включают в качестве обязательного этапа культивирование клеток в искусственных питательных средах. Материалом являются лимфоциты периферической крови и пуповинной крови плода, фибробласты кожи и амниотической жидкости, клетки спонтанно абортируемых эмбрионов и зародышевых оболочек. Прямые методы применяются в тех случаях, когда необходим быстрый результат и имеется возможность получить препараты хромосом клеток, делящихся в организме. Источником таких клеток является костный мозг и клетки зародышевых оболочек. Основным объектом цитогенетического исследования прямыми и непрямыми методами являются стадия метафазы митоза и различные стадии мейоза. Метафаза митоза служит основным объектом для анализа хромосомного набора, т.к. именно на этой стадии возможна точная идентификация хромосом и выявление их аномалий.

Во время митоза каждая хромосома состоит из двух одинаково длинных тонких тяжей, называемых сестринскими хроматидами, сжимающихся в плотные структуры, в связи с чем создается впечатление коротких плечей, поддерживающихся вместе с помощью центромеры. В метафазе, когда их длина самая наибольшая, хромосомы разбиваются на пары. Подобная систематизация хромосом из одной клетки называется кариотипом. При лабораторных исследованиях у каждого пациента анализируется 10–40 метафазных кариотипов. При подозрении на мозаицизм необходимо анализировать как большее число клеток, так и клетки других тканей.

Показания для исследования кариотипа пробанда

    Множественные врожденные пороки развития и микроаномалии у новорожденных детей и их родителей.

    Олигофрения, задержка физического и нервно-психического развития в сочетании с врожденными аномалиями.

    Нарушение дифференцировки пола.

    Первичная и вторичная аменорея.

    Бесплодие.

    Женщины со спонтанными абортами, привычными самопроизвольными абортами, мертворождением.

    У родственников пробанда первой степени родства, который имеет структурные перестройки хромосом.

Для выявления изменений в системе половых хромосом используются следующие экспресс–методы :

    Определение полового Х‑хроматина в интерфазных ядрах клеток буккального эпителия. Каждая клетка содержит только одну генетически активную Х‑хромосому. Цитологическим проявлением неактивной Х‑хромосомы служит хроматиновая масса (тельце Барра), обнаруживаемая на периферии интерфазного ядра. По количеству телец Барра можно судить о количестве неактивных Х‑хромосом. Например, в используемых клетках женского организма (46,ХХ ), при синдроме Клайнфельтера определяется 1 тельце Барра. В клетках мужского организма и в большинстве эпителиальных клеток при синдроме Тернера (45,Х0 ) половой Х‑хроматин отсутствует. Существует эмпирическое правило, согласно которому число телец полового хроматина равно числу Х‑хромосом минус 1 (В=Х–1 ).

    Определение Y ‑хроматина . В интерфазном ядре при окраске люминесцентными красителями (Q–метод) Y‑хромосома выглядит ярко флюоресцирующим скоплением хроматина. Пробы на Х- и Y‑хроматин не должны служить в качестве абсолютно достоверных для диагностики при патологическом изменении половых хромосом. Окончательный ответ может быть получен только при анализе кариотипа пациента.

Показания для исследования полового хроматина

    Нарушение половой дифференцировки.

    Подозрение на синдромы Шерешевского–Тернера, Клайнфельтера.

    Аменорея.

    Бесплодие.

    Внутриутробное определение пола при Х–сцепленных заболеваниях.

Клинический полиморфизм хромосомных синдромов обусловлен различными аномалиями аутосом и половых хромосом. При хромосомных синдромах отмечается резкий дисбаланс генов, но общее влияние генома создает полиморфизм клинических признаков.

Особенности проявления аутосомной патологии

    Характеризуется множественными врожденными пороками развития.

    Сопровождается грубым дефектом интеллекта или резкой задержкой психомоторного развития.

    Продолжительность жизни больных не значительна.

    Диагностика данной патологии возможна с рождения.

Среди числовых аномалий аутосом возможно рождение детей с трисомией 21 хромосомы (синдром Дауна), 13 хромосомы (синдром Патау), 18 хромосомы (синдром Эдвардса), реже встречаются трисомии 8 и 9 хромосом. Трисомия по группам А и В хромосом среди живорожденных не описана.

Среди несбалансированных структурных аномалий возможно рождение детей с синдромами частичной моносомии, например синдром кошачьего крика (делеция короткого плеча 5 хромосомы), синдром Вольфа–Хиршкорна (делеция короткого плеча 4 хромосомы), синдром Арбели (делеция короткого плеча 13 хромосомы), синдром Лежена (делеция короткого плеча 18 хромосомы). Случаем частичной моносомии являются кольцевые хромосомы. Возможна частичная трисомия 6–11 хромосом.

Особенности проявления патологии половых хромосом

    Характерно изолированное поражение внутренних органов и микроаномалии.

    Интеллект снижен незначительно.

    Продолжительность жизни обычная.

Среди числовых аномалий половых хромосом с наибольшей частотой встречаются моносомия Х‑хромосомы (45,Х0 – типичная форма синдрома Шерешевского–Тернера), трисомия Х‑хромосомы у женщин (47,ХХХ ) и дисомия у мужчин (47, XXY – синдром Клайнфельтера), возможна дисомия Y‑хромосомы (47, XYY ).

Из структурных аномалий возможно обнаружение в кариотипе Х‑изохромосомы, состоящей из двух длинных плеч (46, Xi (Xq )), делеции Х‑хромосомы (46, Xdel (X ) (q11 )), кольцевых Х‑хромосом (46, Х , r (Х )).

В большинстве случаев хромосомные аномалии носят спорадический характер, т.е. возникают в виде новой мутации при нормальном кариотипе обоих родителей пробанда. В таких случаях риск для сибсов оценивается по эмпирическим данным для каждого типа аномалий с учетом возраста матери. Риск выше при носительстве сбалансированной перестройки у матери, чем у отца. В ряде случаев при обследовании родителей пробанда у кого-либо из них обнаруживается мозаицизм, т.е. часть клеток имеет такой же аномальный кариотип, как у пробанда. Риск для сибсов рассчитывается по формуле:

х

×К

2–х

где х – доля аномального клеточного клона, К – коэффициент элиминации несбалансированных зигот в эмбриогенезе (при синдроме Дауна К=½).

В настоящее время существуют различные схемы лечения целого ряда хромосомных синдромов, включающие гормональную терапию и хирургическую коррекцию дефектов. Важным для профилактики рождения детей с хромосомными синдромами является генетическое консультирование семьи, исследование кариотипа родителей, расчет риска повторного рождения ребенка с хромосомной патологией, использование комплекса прямых методов пренатальной диагностики (ультразвуковое сканирование плода, исследование альфа–фетопротеина, амниоцентез, хорионбиопсия, кордоцентез и др.) для решения вопроса о целесообразности сохранения заведомо неперспективной беременности.

Частота фенотипических признаков при синдроме Шерешевского–Тернера к периоду полового созревания (регулярная и мозаичные формы)

Признаки

Частота (%)

1. Низкий рост

2. "Щитовидная" грудная клетка

3. Широко расставленные соски

4. Деформация тела грудины

5. Тестоватый тургор тканей

6. Антимонголоидный разрез глаз

7. Эпикант

8. Деформация ушных раковин

9. Крыловидная складка на шее

10. Лимфатические отеки

11. Олигофрения

12. Первичная аменорея

13. Сахарный диабет

14. Обилие пигментных пятен

16. Аркообразное небо

17. Низкий рост волос на шее

18. Гипоплазия или аномальное строение наружных гениталий

19. Врожденные аномалии мочевыводящей системы

20. Врожденные пороки сердца

21. Аномалии скелета

© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары