Вконтакте Facebook Twitter Лента RSS

В чем сущность метода триангуляции. Триангуляция и геодезические пункты

Триангуляция (от лат. triangulum ‒ треугольник), один из методов создания сети опорных геодезических пунктов и сама сеть, созданная этим методом; состоит в построении рядов или сетей примыкающих друг к другу треугольников и в определении положения их вершин в избранной системе координат. В каждом треугольнике измеряют все три угла, а одну из его сторон определяют из вычислений путём последовательного решения предыдущих треугольников, начиная от того из них, в котором одна из его сторон получена из измерений. Если сторона треугольника получена из непосредственных измерений, то она называется базисной стороной Т. В прошлом вместо базисной стороны непосредственно измеряли короткую линию, называемую базисом, и от неё путём тригонометрических вычислений через особую сеть треугольников переходили к стороне треугольника Т. Эту сторону Т. обычно называют выходной стороной, а сеть треугольников, через которые она вычислена,‒ базисной сетью. В рядах или сетях Т. для контроля и повышения их точности измеряют большее число базисов или базисных сторон, чем это минимально необходимо.

Принято считать, что метод Т. изобрёл и впервые применил В. Снеллиус в 1615‒17 при прокладке ряда треугольников в Нидерландах для градусных измерений . Работы по применению метода Т. для топографических съёмок в дореволюционной России начались на рубеже 18‒19 вв. К началу 20 в. метод Т. получил повсеместное распространение.

Т. имеет большое научное и практическое значение. Она служит для: определения фигуры и размеров Земли методом градусных измерений; изучения горизонтальных движений земной коры; обоснования топографических съёмок в различных масштабах и целях; обоснования различных геодезических работ при изыскании, проектировании и строительстве крупных инженерных сооружений, при планировке и строительстве городов и т.д.

При построении Т. исходят из принципа перехода от общего к частному, от крупных треугольников к более мелким. В связи с этим Т. подразделяется на классы, отличающиеся точностью измерений и последовательностью их построения. В малых по территории странах Т. высшего класса строят в виде сплошных сетей треугольников. В государствах с большой территорией (СССР, Канада, КНР, США и др.) Т. строят по некоторой схеме и программе. Наиболее стройная схема и программа построения Т. применяется в СССР.

Государственная Т. в СССР делится на 4 класса (рис. ). Государственная Т. СССР 1-го класса строится в виде рядов треугольников со сторонами 20‒25 км , расположенных примерно вдоль меридианов и параллелей и образующих полигоны с периметром 800‒1000 км . Углы треугольников в этих рядах измеряют высокоточными теодолитами , с погрешностью не более ╠ 0,7" . В местах пересечения рядов Т. 1-го класса измеряют базисы при помощи мерных проволок (см. Базисный прибор ), причём погрешность измерения базиса не превышает 1: 1000000 доли его длины, а выходные стороны базисных сетей определяются с погрешностью около 1: 300 000. После изобретения высокоточных электрооптических дальномеров стали измерять непосредственно базисные стороны с погрешностью не более 1: 400 000. Пространства внутри полигонов Т. 1-го класса покрывают сплошными сетями треугольников 2-го класса со сторонами около 10‒20 км , причём углы в них измеряют с той же точностью, как и в Т. 1-го класса. В сплошной сети Т. 2-го класса внутри полигона 1-го класса измеряется также базисная сторона с указанной выше точностью. На концах каждой базисной стороны в Т. 1-го и 2-го классов выполняют астрономические определения широты и долготы с погрешностью не более ╠ 0,4" , а также азимута с погрешностью около ╠ 0,5" . Кроме того, астрономические определения широты и долготы выполняют и на промежуточных пунктах рядов Т. 1-го класса через каждые примерно 100 км , а по некоторым особо выделенным рядам и значительно чаще.

На основе рядов и сетей Т. 1-го и 2-го классов определяют пункты Т. 3-го и 4-го классов, причём их густота зависит от масштаба топографической съёмки. Например, при масштабе съёмки 1: 5000 один пункт Т. должен приходиться на каждые 20‒30 км 2 . В Т. 3-го и 4-го классов погрешности измерения углов не превышают соответственно 1,5" и 2,0" .

В практике СССР допускается вместо Т. применять метод полигонометрии .При этом ставится условие, чтобы при построении опорной геодезической сети тем и др. методом достигалась одинаковая точность определения положения пунктов земной поверхности.

Вершины треугольников Т. обозначаются на местности деревянными или металлическими вышками высотой от 6 до 55 м в зависимости от условий местности (см. Сигнал геодезический ). Пункты Т. в целях долговременной их сохранности на местности закрепляются закладкой в грунт особых устройств в виде металлических труб или бетонных монолитов с вделанными в них металлическими марками (см. Центр геодезический ), фиксирующими положение точек, для которых даются координаты в соответствующих каталогах.

Координаты пунктов Т. определяют из математической обработки рядов или сетей Т. При этом реальную Землю заменяют некоторым референц-эллипсоидом , на поверхность которого приводят результаты измерения углов и базисных сторон Т. В СССР принят референц-эллипсоид Красовского (см. Красовского эллипсоид ). Построение Т. и её математическая обработка приводят к созданию на всей территории страны единой системы координат, позволяющей ставить топографо-геодезические работы в разных частях страны одновременно и независимо друг от друга. При этом обеспечивается соединение этих работ в одно целое и создание единой общегосударственной топографической карты страны в установленном масштабе.

Лит.: Красовский Ф. Н., Данилов В. В., Руководство по высшей геодезии, 2 изд., ч. 1, в. 1‒2, М., 1938‒39; Инструкция о построении государственной геодезической сети СССР, 2 изд., М., 1966.

  • - точный прием определения взаимного расположения точек на земной поверхности, заключающийся в разбивке на ней с помощью опорных пунктов системы последовательных треугольников и затем их измерении...

    Сельскохозяйственный словарь-справочник

  • - см. Градусные измерения...
  • - 1777 г. ездил в степь для осмотра места на Эмбе, к построении крепости Рапорт его ген.-поручику Мансурову, в сент. 1777 г. ...

    Большая биографическая энциклопедия

  • - метод определения планового положения геодезических пунктов путём построения на местности системы смежных или перекрывающихся треугольников, в которых измеряются все углы и одна или несколько сторон -...

    Строительный словарь

  • - - один из методов создания сети опорных геодезич. пунктов, заключающийся в построении рядов или сетей из примыкающих друг к другу треугольников и в определении положения их вершин в избранной системе...

    Геологическая энциклопедия

  • - метод определения положения геодезич. пунктов путём построения на местности систем смежно располож. треугольников, в к-рых измеряют углы л длину сторон. Государственная триангуляц...

    Большой энциклопедический политехнический словарь

  • - наиболее точный прием определения взаимного расположения точек на земной поверхности...

    Морской словарь

  • Энциклопедический словарь Брокгауза и Евфрона

  • - деревянный брус с нанесенными на нем делениями; служит для отсчитывания высот при нивелировании...

    Энциклопедический словарь Брокгауза и Евфрона

  • - Координаты в геодезии, совокупность трёх чисел, определяющих положение точки земной поверхности относительно некоторой исходной поверхности...
  • - Прямоугольные координаты в геодезии, пары чисел, определяющие положение точек на плоскости геодезической проекции...

    Большая Советская энциклопедия

  • - Рекогносцировка в геодезии, осмотр и обследование местности с целью выбора положения астрономических и геодезических опорных пунктов для обоснования топографических съёмок...

    Большая Советская энциклопедия

  • - Репер в геодезии, знак, закрепляющий точку земной поверхности, высота которой относительно исходной уровенной поверхности определена путём нивелирования...

    Большая Советская энциклопедия

  • - Траверс в геодезии, термин, не совсем правильно употребляемый для обозначения полигонометрического хода с непосредственно измеренными длинами сторон. См. Полигонометрия...

    Большая Советская энциклопедия

  • - I Триангуля́ция один из методов создания сети опорных геодезических пунктов и сама сеть, созданная этим методом...

    Большая Советская энциклопедия

  • - Универсал в астрономии и геодезии, то же, что универсальный инструмент...

    Большая Советская энциклопедия

"Триангуляция (в геодезии)" в книгах

Триангуляция

автора Докинз Клинтон Ричард

Триангуляция

автора Докинз Клинтон Ричард

Триангуляция

Из книги Рассказ предка [Путешествие к заре жизни] автора Докинз Клинтон Ричард

Триангуляция Лингвисты часто желают проследить историю языков. Там, где сохранились письменные свидетельства, это довольно легко. Историк-лингвист может использовать второй из наших двух методов реконструкции, прослеживая прошлое восстановленных реликтов, в данном

Триангуляция

Из книги Рассказ предка [Паломничество к истокам жизни] автора Докинз Клинтон Ричард

Триангуляция Лингвистам часто бывает необходимо восстановить историю языков. В тех случаях, когда сохранились письменные источники, это довольно просто. Специалист по исторической лингвистике может использовать второй из методов реконструкции, изучая “биографию”

«Триангуляция желания» 1890–х гг

Из книги Эротическая утопия: новое религиозное сознание и fin de siècle в России автора Матич Ольга

«Триангуляция желания» 1890–х гг На протяжении 1890–х гг. Гиппиус сочетала девственный брак с многочисленными пересекающимися любовными треугольниками. Ее «связи» с мужчинами вне брака, очевидно, тоже не включали соития и были «фиктивными», как и ее брак. Несмотря на

Координаты (в геодезии)

БСЭ

Космическая триангуляция

Из книги Большая Советская Энциклопедия (КО) автора БСЭ

Прямоугольные координаты (в геодезии)

Из книги Большая Советская Энциклопедия (ПР) автора БСЭ

Известно, что триангуляция как геодезический термин означает способ создания геодезических сетей . Да, это так. Но следует начать с другого.

Изначально с возникновением потребности человека в познании, обычное мышление приводит его к накоплению определенного багажа знаний. С развитием научного мышления все эти знания систематизируются, в том числе разъясняются на основе фактов, явлений и доказательств. Применяя теоретические предположения на практике, возникают своего рода критерии истины. То есть имеют ли подтверждения практическим путем все те предположения, которые с помощью определенных способов дают конкретный результат. Пожалуй, одним из таких научных методов, решающих задачу по высокоточному измерению больших расстояний между пунктами на земной поверхности с построением примыкающих друг к другу треугольников и измерений внутри них стал способ триангуляции.

Первым кто изобрел и применил метод триангуляции (1614-1616), был великий голландский ученый Виллеброрд Снелл (Снеллиус). В те годы уже были предположения о том, что Земля является планетой в космическом пространстве и имеет форму сферы (из космологии Джордано Бруно 1548-1600). Установление точных размеров планеты имело большое практическое значение по ее освоению в дальнейшем. Вот для этого в Нидерландах через постройку ряда треугольников были впервые выполнены градусные измерения дуги меридиана способом триангуляции. Что имеется ввиду. Выполнив измерения между жесткими геодезическими пунктами с разностью широт между ними в один градус (у Снеллиуса 1º11´30") способом триангуляции и получив конкретное расстояние дуги, голландский математик обычным расчетом мог получить длину всей окружности меридиана. Очевидно, что вычислить радиус Земли, приняв ее фигуру за форму шара (эллипса), оставалось делом техники.

В завершение исторического экскурса можно выделить взаимосвязанность и выборность научных познаний для будущего практического применения человеком. И не удивительно, что изобретение способа триангуляции произошло именно в Нидерландах, которые на тот момент считались ведущей морской державой с потребностью новых познаний в навигации, географии, астрономии и конечно геодезии .

Сущность метода

Триангуляция заключается в определении пространственного местоположения специально закрепленных на местности геодезических пунктов в вершинах целого ряда треугольников. Изначально, с высокой степенью точности (до долей секунд) определяют азимуты исходных направлений ab , ba , mn , nm (рис.1.Триангуляционный ряд треугольников по меридиану). Следующим этапом будет определение астрономических координат (широты и долготы) в пунктах измерений азимутов двух исходных базисов. В каждой паре жестких сторон (ab , mn ) координаты измеряются только в одной точке, например a , m (рис.1). При этом следует обратить особое внимание на определение астрономических широт в ряду треугольников, расположенных по направлению меридианов. При измерениях в треугольниках, сформированных вдоль параллелей, необходимо уделить должное внимание определению астрономических долгот. Далее производят измерения длин двух базисных сторон (ab , mn ). Эти стороны имеют сравнительно не большие длины (порядка 8-10 км). Поэтому их измерения более экономичные и точные относительно сторон cd , tq , составляющих расстояния от 30 до 40 км. В следующую очередь выполняется переход от базисов ab , mn через угловые измерения в ромбах abcd и mntq к сторонам cd , tq . А затем последовательно практически в каждой вершине треугольников cde , def , efg и других измеряются горизонтальные углы до примыкания к следующей основной стороне tq всего ряда треугольников. Через измеренные углы треугольника с измеренной базисной или вычисленной основной стороной последовательно вычисляются все другие стороны, их азимуты и координаты вершин треугольников.

Рис.1. Триангуляционный ряд треугольников по меридиану.

Триангуляционные сети

После первого применения градусного измерения дуги Снеллиусом триангуляционный метод становится основным способом в геодезических высокоточных измерениях. С XIX века, когда триангуляционные работы стали более совершенными с его помощью стали формироваться целые геодезические сети , строящиеся вдоль параллелей и меридианов. Самая знаменитая из всех известна под наименованием геодезической меридианной дуги Струве и Теннера (1816-1852) в последствие зачислена в мировое наследие по ЮНЕСКО. Ее триангуляционный ряд протянулся по Норвегии, Швеции, Финляндии и России от Северного Ледовитого океана до Черного моря в устье Дуная и составил дугу в 25º20´(рис.2).

Рис.2.

За основу геодезических сетей триангуляции в нашей стране принята схема профессора Ф.Н.Красовского (рис.3). Ее суть заключается в применении принципа построений от общего к частному. Изначально закладываются вдоль меридианов и параллелей пункты, образующие ряды треугольников протяженностью в пределах 200-240 км. Длины сторон в самих треугольниках составляют 25-40км. Все астрономические измерения азимутов, координат (широт и долгот) выходных точек на пунктах Лапласа (1) и промежуточных астрономических точках (2), высокоточные базисные (3) геодезические измерения и в каждой точке этой цепи должно соответствовать установленным требованиям I класса точности (рис.3). Замкнутый полигон из четырех триангуляционных рядов представляет собой фигуру, напоминающую квадрат с периметром равным ориентировочно около 800 км. Через центральные части первоклассных рядов триангуляции устраиваются в направлении друг к другу основные ряды триангуляционной сети II класса (рис.3) соответствующей точности. Базисные длины сторон в этих рядах не измеряются, а принимаются базисы со сторон триангуляции I класса. Аналогично отсутствуют и астрономические пункты. Возникшие четыре пространства заполняются сплошными триангуляционными сетями и II, и III классов.

Рис.3.Государственные сети триангуляции.

Безусловно описанная схема развития сетей триангуляции по Красовскому не может закрыть всю территорию страны ввиду понятных причин больших лесных и не заселенных территорий страны. Поэтому с запада на восток вдоль параллелей были проложены отдельные ряды первоклассной триангуляции и полигонометрии , а не сплошная триангуляционная сеть.

Достоинства триангуляции

В развитии геодезической науки и ее практического применения очевидны достоинства триангуляционного способа измерений. С помощью этого универсального метода возможно:

  • определение положения геодезических точек на значительно удаленных расстояниях;
  • выполнение основных работ по строительству геодезических сетей на всей территории страны;
  • обеспечение основой всех топографических съемок ;
  • выстраивание через основные геодезические работы различных систем координат ;
  • производство инженерных и изыскательских работ;
  • периодическое определение размеров Земли;
  • изучение перемещений земной поверхности.

При проектировании сетей триангуляции должны соблюдаться требования, приведенные в табл.1

Таблица 1

Показатель Класс
Средняя длина стороны треугольника, км 20-25 7-20 5-8 2-5
Относительная ошибка базисной выходной стороны 1:400000 1:300000 1:200000 1:100000
Примерная относительная ошибка стороны в слабом месте 1:150000 1:200000 1:120000 1:70000
Наименьшее значение угла треугольника, градус 40 20 20 20
Допустимая невязка треугольника, угл. с 3 4 6 6
Средняя квадртическая ошибка угла по невязкам треугольника, угл. с 0,7 1 1,5 2,0
Средняя квадратическая ошибка взаимного положения смежных пунктов, м 0,15 0,06 0,06 0,06

3.1. Расчет количества знаков

При проектировании сети триангуляции 3 и 4 классов необходимо рассчитать количество пунктов отдельного класса.

Требуемая плотность геодезических пунктов при общегосударственном картографировании территории страны зависит от масштаба топографической съемки, методов ее выполнения, а также от методов создания съемочного геодезического обоснования.

Таблица 2

Между длинами сторон треугольников разных классов должны соблюдаться следующие приближенные соотношения:

s 1= s 1 s 2 =0,58s 1 s 3 =0,33s 1 s 4 =0,19s 1 . (1)

Если за исходную принять длину стороны в триангуляции 1 класса, равную в среднем S 1 = 23 км, то по формулам (1) получим следующие длины сторон треугольников в сетях триангуляции 2-4 классов (табл. 3).

Таблица 3

В реальных сетях триангуляции треугольники несколько отступают от равносторонней формы. Однако в среднем для обширной по размерам геодезической сети соотношения (1) длин сторон треугольников должны более или менее точно соблюдаться, в противном случае общее число пунктов в сети может оказаться неоправданно завышенным. Среднее число пунктов разных классов на любой площади Р картографируемой территории можно рассчитать по формулам

где - площадь, обслуживаемая одним пунктом -го класса (i =1,2,3,4).Результаты вычислений следует округлять до целого десятка. В качестве примера по этим формулам определим число пунктов 3-4 классов на площади Р = 200 км 2 при n 1 = 0, n 2 =2 .

Для триангуляции 3 класса:

Для триангуляции 4 класса:

Следовательно, на площади снимаемой территории Р=200 км 2 должны запроектировать 11 пунктов, то есть 2 пункта 2 класса, 2 пункта 3 класса и 7 пунктов 4 класса.

3.2. Построение триангуляционной сети

При разработке графического проекта сети особое внимание следует обращать на выбор местоположения каждого отдельного пункта. Все пункты государственной геодезической сети должны быть расположены на командных вершинах местности. Это необходимо для того, чтобы, во-первых, обеспечить взаимную видимость между смежными пунктами при минимальных высотах геодезических знаков, во-вторых, возможность развития в будущем сети в любом направлении. Длины сторон между смежными пунктами должны соответствовать требованиям инструкции. Во всех случаях геодезические пункты должны находиться в таких местах, где будет обеспечена сохранность их положения в плане и по высоте в течение длительного времени. Поскольку на постройку геодезических знаков расходуется в среднем 50-60 % всех затрат на создание сети, необходимо уделять самое серьезное внимание выбору мест для установки пунктов на местности с целью снижения их высоты.

При проектировании сетей триангуляции разных классов важное значение имеет обеспечение надежной привязки сетей более низкого класса к сетям более высокого класса.

Рис. 1. Схемы привязки геодезических сетей к сторонам (а) и пунктам (б) триангуляции высшего класса

Рис.2. Схемы построения сетей триангуляции

После того как все пункты будут нанесены на карту, их соединяют прямыми линиями. На отдельном листе вычерчивают схему запроектированной сети, на которую выносят названия пунктов, длины сторон в километрах, значения углов в треугольниках с точностью до градуса, высоты земной поверхности с точностью до метра. Углы измеряют транспортиром по топографической карте. Суммы углов в треугольниках должны равняться 180º, а в полюсе центральной системы 360º. Длины сторон измеряются линейкой. Под схемой приводятся условные обозначения исходных сторон, сторон триангуляции и пунктов сети.

3.3. Расчет высот знаков

На пунктах геодезической сети строят геодезические знаки такой высоты, чтобы визирные лучи при угловых и линейных измерениях проходили по каждому направлению на заданной минимальной высоте над препятствием, не касаясь его. Сначала определяют приближенные высоты знаков l 1 ’ и l 2 ’ для каждой пары смежных пунктов, а затем корректируют их и находят окончательные значения высот l 1 и l 2 . Приближенные высоты знаков l 1 ’ и l 2 ’ (рис.3) вычисляют по формулам

где h 1 и h 2 - превышения вершины препятствия в точке С (c учетом высоты леса) над основаниями первого и второго знаков соответственно; а- установленная действующей инструкцией допустимая высота происхождения визирного луча над препятствием; u 1 и u 2 - поправки за кривизну Земли и рефракцию.

Знаки при h 1 и h 2 определяют по знакам разностей

h 1 =H c -H 1 ,

h 2 = H c -H 2 , (5)

где Н с - высота вершины препятствия в точке С; Н 1 и Н 2 - высота земной поверхности в местах установки первого и второго знаков.

Рис.3. Схема определения высоты геодезических знаков

Поправки v за кривизну Земли и рефракцию вычисляют по формуле

где k - коэффициент земной рефракции; R- радиус Земли; s- расстояние от препятствия до соответствующего пункта. При k = 0,13 и R=6371 км формула (6) примет вид

V=0,068s 2 , (7)

где v получают в метрах, a s выражено в километрах.

В том случае, если превышения h 1 и h 2 имеют один и тот же знак, а расстояния s 1 и s 2 существенно разные, высоты знаков l ’ 1 и l ’ 2 , вычисленные по формулам (4), будут значительно отличаться друг от друга: один знак низкий, а другой чрезмерно высокий (рис.4). Высокие знаки строить экономически невыгодно. Поэтому высоты знаков, вычисленные по формулам (4), необходимо откорректировать так, чтобы сумма квадратов окончательных высот знаков l 1 и l 2 была наименьшей, т. е. = min. При соблюдении данного требования расходы на постройку данной пары знаков будут, как правило, наименьшими, поскольку стоимость постройки каждого знака при прочих равных условиях почти пропорциональна квадрату его высоты.

Откорректированные высоты каждой пары знаков на концах стороны при соблюдении условия = min и выполнении требования о прохождении визирного луча на заданной высоте а над препятствием вычисляются по формулам

Рис.4. Схема корректирования высоты геодезического знака

На пункте с n направлениями будет получено n значений высоты знака, так как вычисления по каждой отдельной стороне (направлению) дадут разные значения высоты знака на данном пункте. За окончательную высоту принимают ту, при которой обеспечивается видимость по всем направлениям при минимальной (допустимой) высоте прохождения визирных лучей над препятствиями. Результаты расчетов высот геодезических знаков представить в таблице 4.

Таблица 4

Название точек Расстояния s 1 и s 2 Высоты Н,м Превышения h 1 и h 2 v, м а,м Приближенные высоты l 1 ’ и l 2 ’ Откорректи-рованные высоты Стандартные высоты знаков
Лискино 2,4 137,5 3,5 0,4 1,0 4,9 6,2
С 141,0
Попово 5,2 138,2 2,8 1,8 1,0 5,6 2,8

Для наиболее сложных сторон построить профили, на которых кроме поверхности земли красной линией показать открывшуюся видимость после установки геодезического знака.

3.4. Предрасчет точности элементов сети триангуляции

Для уверенного использования окончательного варианта проекта геодезической сети необходимо иметь надежные численные характеристики слабых ее элементов. На составленной схеме находим слабые стороны сети. Слабая сторона находится по принципу равно удаленности ее от исходной стороны.

В качестве критерия точности принимается средняя квадратическая ошибка измеренных величин

где µ - средняя квадратическая ошибка единицы веса;

Р F – вес рассматриваемой функции.

За ошибку единицы веса принимается ошибка измеренных величин. Так как сеть еще проектируется, углы и длины, участвующие в предрасчете, определяются по топографической карте.

Средняя квадратическая ошибка слабой стороны n-треугольника, входящего в центральную систему или геодезический четырехугольник, определяется по формуле

где m lgb - средняя квадратическая ошибка логарифма исходной стороны;

m β - средняя квадратическая ошибка измерения угла в рассматриваемом классе триангуляции;

R i – ошибка геометрической связи трегольника.

Средняя квадратическая ошибка слабой стороны n-треугольника, являющегося элементом простой цепи треугольников определяется по формуле

Вычисление ошибки геометрической связи выполняется по формуле:

R i =δ 2 А i + δ 2 В i + δ А i * δ В i , (12)

где А i и B i – связующие углы в треугольниках;

δ А i , δ В i - приращения логарифмов синусов углов А и В при изменении углов на 1" в единицах 6-го знака логарифма. Значение δ можно определить по формуле

δ А i =МctgA i (1¤ρ")10 6 =2,11ctgA i . (13)

При предрасчете точности слабой стороны по средним квадратическим ошибкам, полученным по двум ходам, вычисляется среднее весовое значение по формуле:

где m lgS 1 и m lgS 2 средние квадратические ошибки определения от базиса по 1 и 2 ходам.

Относительную ошибку найдем по формуле

Пример. Запроектированная сеть триангуляции 3 класса состоит из центральной системы (рис.5). Слабой является сторона «Кленово-Завихрастово», выполним предрасчет ее точности, результаты вычисления ошибки геометрической связи по первому и второму ходу представим в таблице 5.

Рис.5.Фрагмент сети

Таблица 5

Ход 1 Ход 2
А В R i А В R i
5,44 5,05
5,62 5,40
6,28 4,81
Сумма 17,34 Сумма 15,25

m lgS1 =5,11 ; m lgS2 =4,86; m Sn(ср) =3,52;

Вывод: Полученная относительная ошибка слабой стороны удовлетворяет требованиям инструкции для сети триангуляции 3 класса.

Предрасчет точности в триангуляции 4 класса выполняется аналогичным способом.

3.5. Расчет качества сети строгим способом

Расчет качества сети строгим способом произведем на примере сети, изображенной на рис.6. Для этой сети имеем имеем 9 независимых условных уравнений: 7 уравнений фигур, 1 условие горизонта, 1 полюсное условное уравнение. Исходные данные приведены в табл. 6

Таблица 6

Название пункта № угла Угол, º δ Название пункта № угла Угол, º δ
A 0.68 F 1.08
1.71 J 1.17
B 0.73 1.37
1.27 1.65
C 1.37 O 0.60
0.60 1.12
D 1.59 1.97
1.71 1.32
E 1.59 1.03
1.17 1.48
0.98

Рис.6. Сеть триангуляции 3 класса

Условные уравнения фигур:

(1) + (2) + (3) + W1 = 0

(4) + (5) + (6) + W2 = 0

(7) + (8) + (9) + W3 = 0

(10) + (11) + (12) + W4 = 0

(13) + (14) + (15) + W5 = 0

(16) + (17) + (18) + W6 = 0

(19) + (20) + (21) + W7 = 0

Условные уравнения горизонта

(1) + (5) + (8) + (11) + (14) + (17)+ W8 = 0

Полюсные условные уравнения.

После логарифмирования, приведя к линейному виду, будем иметь

δ 2 (2)-δ 3 (3)+δ 4 (4)-δ 6 (6)+δ 7 (7)-δ 9 (9)+δ 10 (10)-δ 12 (12)+δ 13 (13)-δ 15 (15)+δ 16 (16)-δ 18 (18)+W9=0

Для составления весовой функции определяем слабую сторону по известному базису.

На основании полученной системы уравнений составим таблицу коэффициентов условных уравнений и весовой функции (табл. 7). Значения δ n вычислены по формуле δ=2,11ctgβ.

Таблица 7

Коэффициенты условных уравнений

№ п/п a b c d e g h i k f s
+1 +1 -0.60 +1.40
+1 +1.59 +1.59 +4.18
+1 -1.59 -0.59
+1 +1.37 +2.37
+1 +1 +2.00
+1 -1.17 -0.17
+0.68
+1 +0.68 +1.68
+1 +1 +2.00
+1 -1.17 -0.17
0.7
+1 +0.73 +1.73
+1 +1 +1.32 +3.32
+1 -1.71 -1.71 -2.42
+1 +1.37 +1.37 +3.74
+1 +1 +2.00
+1 -1.27 -1.27 -1.54
+1 +1.71 +1.71 +4.42
+1 +1 +2.00
+1 -0.60 -0.60 -0.20
+1.00
+1 +1.00
+1 +1.00
+1 +1.00
Σ -0.06 1.81 28.75

Так как мы имеем большое число условных уравнений, наиболее целесообразно вычислять обратный вес функции методом двухгруппового уравнивания. Обратный вес вычисляется по формуле

где f – коэффициенты заданной функции, для которой находят среднюю квадратическую ошибку; a, b, … - коэффициенты первичного, вторичного и т.д. преобразованных уравнений второй группы; , , … - суммы коэффициентов заданной функции по тем поправкам первого, второго и т.д. уравнений фигур первой группы, которые входят в выражение функции;

n 1, n 2 , … - число поправок, входящих соответственно в первые, вторые и т.д. уравнения фигур первой группы.

При разделении уравнений на две группы в первую группу включают все уравнения фигур (для нашей сети, т.к. нет перекрывающихся треугольников). Во вторую группу войдут все остальные уравнения и весовая функция, т.е. уравнение горизонта, полюса и уравнение функции.

Таблица 8

Коэффициенты условных уравнений первой группы

№ п/п a b c d e g h f
-0.60
1.59
=0.99
=0
=0
1.32
-1.71
=-0.39
1.37
-1.27
=0.10
1.71
-0.60
=1.11
=0

I= 2 /n 1 + …+ 7 /n 7 = 0,33+0,05+0,003+0,41=0,79

Преобразованные коэффициенты вычисляются по формуле

А=а-[а]/n; В=b-[b]/n,

где А, В – преобразованные коэффициенты; n – число углов, входящих в треугольник; [а]/n – среднее значение непреобразованных коэффициентов в треугольнике; [а] – сумма непреобразованных коэффициентов в треугольнике.

Таблица 9

Таблица преобразованных уравнений второй группы и определение коэффициентов нормальных уравнений

N поправки i k I K f s
0,67 -0,60 0,07
1,59 -0,33 1,59 1,59 2,85
-1,59 -0,34 -1,59 -1,93
0,33
1,37 -0,33 1,30 0,97
0,67 -0,06 0,61
-1,17 -0,34 -1,24 -1,58
0,33 0,07
0,68 -0,33 ,84 0,51
0,67 0,17 0,84
-1,17 -0,34 -1,01 -1,35
0,33 -0,16
0,73 -0,33 1,06 0,73
0,67 0,32 1,32 2,31
-1,71 -0,34 -1,38 -1,71 -3,43
0,33 -0,33
1,37 -0,33 1,34 1,37 2,38
0,67 -0,04 0,63
-1,27 -0,34 -1,30 -1,27 -2,91
0,33 0,03
1,71 -0,33 1,34 1,71 2,72
0,67 -0,37 0,30
-0,60 -0,34 -0,97 -0,60 -1,91
0,33 0,37
}
© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары