Вконтакте Facebook Twitter Лента RSS

В состав большинства водных экосистем входит. Особенности водных экосистем

Воду считали простым элементом до тех пор, пока в 1781 — 1784 гг. Генри Кавендиш (Cavendish , 1731 — 1810) не показал, что она образуется при сгорании водорода, и Антуан Лавуазье (Lavoiser , 1743-1794) не определил её состав. Существование водных экосистем, да и в целом, полностью зависит от уникальных свойств воды как одного из главных минералов Земли.

Вода бесцветна и прозрачна в тонких слоях и выглядит голубовато-зеленой (бирюзовой) в толстых. Благодаря этому фотосинтез может идти в достаточно глубоких слоях воды.

Молекулы воды сильно электрически поляризованы (рис. 1), и поэтому ей свойственны чрезвычайно мощное взаимное притяжение молекул, очень высокая диэлектрическая проницаемость, и она является уникальным и почти универсальным растворителем для солей. Её молекулы притягивают, окружают и отделяют ионы от кристаллов солей, образуя комплексы гидратированных ионов. Например, положительные ионы металлов притягивают отрицательные («кислородные») концы молекул воды, создавая и удерживая вокруг себя слой из них не только в растворе, но даже в кристаллах после выпаривания. Вода обладает очень сильным поверхностным натяжением и способностью подниматься по капиллярам. Всё это делает воду уникальным средством для транспортировки питательных веществ как внутри живых организмов, так и вне них.

Вода имеет парадоксальную зависимость плотности от температуры (рис. 1). Закон «все тела при нагревании расширяются» вблизи точки замерзания для неё неверен. Максимум плотности жидкой воды — при 4 °С. Более того, при замерзании, то есть переходе в кристаллическое состояние, вода не уменьшает, а почти на 1/10 увеличивает свой объём. Благодаря этому образующийся на водоёмах лёд не опускается на дно, а остаётся на поверхности, предохраняя водоёмы от промерзания. Без этого свойства вся вода Земли, скорее всего, быстро собралась бы в полярные ледяные шапки, и жизнь стала бы невозможна.

Теплоёмкость воды, её теплоты испарения и плавления очень велики. Вследствие большой теплоёмкости воды океаны и моря, медленно накапливая и отдавая тепло, существенно уменьшают перепады температуры и смягчают климат планеты. Испаряясь с поверхности океанов, вода запасает энергию в виде теплоты парообразования и впоследствии отдаёт её при образовании облаков и выпадении осадков. Таким образом, климато- образующее влияние воды невозможно переоценить.

Рис. 1. Структура молекулы воды и зависимость плотности льда и воды or температуры. Рядом с молекулой воды показан в том же масштабе отрезок длиной в 1 А (ангстрем) = 10) -10 м

Вода была колыбелью жизни на Земле, и водные экосистемы составляют большую часть .

Пять основных факторов влияют на биоту водных экосистем:

  • солёность, то есть процентное содержание (по весу) растворенных в воде солей, главным образом NaCl, КСI и MgSO 4 ;
  • прозрачность, характеризуемая относительным изменением интенсивности светового потока с глубиной;
  • концентрация растворенного кислорода;
  • доступность питательных веществ, прежде всего соединений химически связанного азота и фосфора;
  • температура воды.

Морская экосистема

Морские экосистемы характеризуются высокой соленостью, а материковые воды (воды суши) — низкой. По степени солёности можно выделить и промежуточные биотопы: эстуарии (приустьевые зоны), где воды рек смешиваются с морской водой, и прибрежные болота. Некоторые внутренние моря, например Балтийское море и его заливы, по своим свойствам являются скорее эстуариями, чем истинными морями.

В морских экосистемах, занимающих примерно 71 % поверхности Земли, основным продуцентом является фитопланктон, состоящий из микроскопических водорослей и бактерий (рис. 2). Для успешной жизнедеятельности фитопланктон нуждается в освещении, поэтому в принципе размещается в верхнем эвфотическом слое воды на глубинах не более 200 метров. Основным лимитирующим фактором в этом слое оказывается наличие питательных веществ, прежде всего связанного азота, фосфора и минеральных веществ. Из этого слоя питательные вещества оседают вглубь в результате нескольких процессов: «дождь» мёртвых организмов, миграция зоопланктона по вертикали, диффузия растворённого органического вещества. Тем самым обеспечивается питание глубоководной биоты. В распределении питательных веществ по акватории океанов велика роль океанических течений, переносящих смытые с континентов вещества в зоны открытого моря. В этой связи в океанах можно выделить две зоны: континентальный шельф и пелагическую зону (пелагиаль), то есть область открытого моря. Континентальный шельф представляет собой сравнительно мелкое подводное продолжение материковых плит и занимает не более 1/10 поверхности океана. Однако удельная, на единицу площади поверхности, биологическая продуктивность шельфа в несколько раз выше, чем у открытого моря. Высокой продуктивности шельфа способствуют два обстоятельства, приводящие к обогащению его вод питательными веществами. Во-первых, именно сюда стекают континентальные воды, несущие смытые с суши минеральные и органические вещества. Во-вторых, когда ветер отгоняет теплые поверхностные слои воды от берега, на глубине возникает противотечение, и холодные глубинные воды поднимаются к поверхности вдоль береговой линии континента, принося с собой ранее осевшие питательные вещества (рис. 3). Это явление называют апвеллинг.

Рис. 2. Структура океанических экосистем

Области активного вертикального перемешивания и повышенной продуктивности есть и далеко от берегов, например, возле экватора, в зоне пассатов. Огромные центральные области океанов вблизи Северного и Южного тропиков, где вертикальное перемешивание вод очень слабо, можно уподобить сухим степям не только по географической широте, но и по их малой биопродуктивности. Напротив, в умеренных и субполярных широтах сезонные колебания температуры и течения способствуют перемешиванию, и биопродуктивность океана возрастает.

Эстуарии, лиманы, прибрежные заболоченные территории являются одними из наиболее продуктивных экосистем. На первый, обывательский взгляд эти земли бесполезны и только являются рассадником всевозможных кровососущих насекомых. Поэтому до сих пор существует тенденция к их «улучшению» путём дорогостоящих мелиоративных работ. На самом деле их роль огромна, и они нуждаются в строгой охране. Во-первых, здесь нерестится более 70 % наиболее ценных в промысловом отношении рыб и других морских организмов. Поэтому «освоение» этих территорий приводит к огромному экономическому ущербу за счёт истощения рыбных промыслов. Во-вторых, они блестяще выполняют функции бесплатных и очень эффективных очистных сооружений для стекающих с континента загрязненных вод, предохраняя от гибели чувствительные прибрежные и шельфовые морские экосистемы. В-третьих, они служат местами обитания для гигантского количества птиц и животных, в том числе редких видов.

Рис. 3. Формирование апвеллинга. Вместе с холодными придонными водами к поверхности поднимаются скопившиеся у дна питательные вещества, что вызывает быстрый рост биоты

Болотные экосистемы

Прибрежные болотные системы занимают только около 5 % всей площади болот. Основная часть болот располагается внутри континентов, и они являются пресноводными экосистемами, играющими ключевую роль в естественном регулировании водотока рек умеренного пояса. Болотные экосистемы находятся в неразрывной связи с лесными биогеоценозами. Почвы болот почти постоянно покрыты водой, поэтому растительные остатки здесь не перегнивают до конца, и вместо гумуса на дне болот образуется торф. По мере роста слоя торфа болото зарастает сфагновым мхом. И торф, и мох обладают уникальной способностью впитывать, накапливать и сохранять влагу. В периоды избыточного увлажнения, — во время таяния снегов и затяжных дождей, — они собирают воду, а в сухие периоды постепенно отдают её ручьям, мелким речкам и проточным озёрам, поддерживая уровень воды в реках и, самое главное, уровень грунтовых вод на огромных пространствах. При этом болота служат мощными естественными фильтрами для накопленной в них воды, практически полностью очищая сё от естественных и антропогенных загрязнителей, таких как остатки удобрений, фекалии, ядохимикаты и даже остатки нефтепродуктов. На Европейской территории России именно верховые болота питают крупнейшие реки — Волгу, Дон, Днепр, Западную и Северную Двину. Проведение мелиоративных работ, осушение болот и добыча торфа как естественного удобрения или топлива в конечном счёте оказываются, как правило, абсолютно неоправданными, так как ведут к гибели лесов и разрушению водного режима.

Экосистема пресного водоема

В реках и пресноводных водоёмах основными лимитирующими факторами для живых организмов являются концентрации растворенного кислорода и питательных веществ — связанного азота, фосфора и минеральных солей.

Развитие основных продуцентов — фитопланктона и укоренённых водных растений зависит от количества питательных веществ. Так как для фотосинтеза нужен свет, фитопланктон концентрируется в верхнем слое воды. Поэтому продуктивность всей экосистемы зависит от поступления в этот слой питательных веществ. Они либо смываются дождями и талыми водами с берегов, либо поднимаются наверх вследствие активного перемешивания воды, когда взмучивается ил, то есть осевшие на дно органические остатки. Зоопланктон (микроскопические черви и ракообразные, инфузории, бактерии, одноклеточные жгутиконосцы) питается фитопланктоном и в свою очередь служит пищей для рыб и насекомых. Для жизнедеятельности консументов, — зоопланктона и рыб, — требуется кислород, поступление которого также зависит от скорости и глубины перемешивания воды. Таким образом, перемешивание воды является важнейшим фактором, так как от него зависит и поступление питательных веществ для фитопланктона, и концентрация кислорода.

Типичная экосистема пресноводного водоёма умеренных широт показана на рис. 4. В мелководной прибрежной зоне — литорали обитают многочисленные продуценты — как свободно плавающие, так и укоренённые водные растения. Здесь много насекомых и их личинок, здесь обитают лягушки, черепахи, водоплавающие птицы и млекопитающие. Здесь же охотничьи угодья аистов и цапель. Пелагиаль - это поверхностный слой открытых вод, где обитают планктонные организмы и поедающие планктон рыбы. Профундаль - слабо освещенная зона, где живут хищные и придонные рыбы. Бенталь - дно, покрытое илом. Здесь обитают многочисленные детритофаги и редуценты — моллюски, черви, раки и личинки насекомых. В нижней части рис. 4 показаны характерные зависимости температуры от глубины. Весной и осенью, когда эти зависимости сменяют друг друга, происходит активное вертикальное перемешивание воды, и верхние слои обогащаются питательными веществами, а профундаль — кислородом. Перемешивание имеет такой сезонный характер в большинстве равнинных водоёмов умеренного климатического пояса. Весной, при таянии льда и снега холодные тяжёлые воды стремятся опуститься на дно, а относительно более тёплые, придонные — подняться наверх. Аналогичный процесс происходит и осенью. Отсюда — весеннее «цветение» воды в прудах, озёрах и водохранилищах. Летом и зимой слои холодной и теплой воды располагаются устойчиво (устойчивая термическая стратификация ), и перемешивание почти отсутствует. Ледяной покров также препятствует растворению кислорода.

Рис. 4. Типичная экосистема пресноводного водоёма умеренных широт

При быстром течении и активном перемешивании воды кислород имеется в достаточном количестве, и все трофические уровни приходят в равновесие. Это ситуация, типичная для рек с быстрым течением. Крупные озёра, в которых соблюдаются такие условия, представляют собой особую ценность как резервуары чистой пресной воды. К ним относятся, прежде всего, Байкал, а также Ладожское и Онежское озера.

Большинство водных экосистем обладают огромным запасом устойчивости и высокой способностью к самоочищению. Однако уровень антропогенных воздействий, которым они подвергаются, непомерно высок.

Для пресноводных водоёмов большую опасность представляет собой смыв удобрений с окружающих водоём полей и попадание неочищенных фекальных вод от скотоферм. При слабом перемешивании и избытке питательных веществ масса фитопланктона быстро растёт. Одновременно растёт и численность консументов — зоопланктона и рыб, потребляющих кислород, а также скорость окисления органических остатков бактериями. В результате возникает дефицит кислорода, ограничивающий численность консументов. Водоём зарастает синезелёными водорослями. Такая сукцессия называется эвтрофикацией. При особо крупных масштабах загрязнения эвтрофикация может угрожать даже таким большим водоёмам, как Балтийское морс.

Особая роль в очистке воды принадлежит двустворчатым фильтрующим моллюскам. Именно они очищают воду от избытка органических загрязнителей, попадающих в водоёмы со сточными водами. При попадании в воду токсичных веществ моллюски первые «принимают удар на себя» и погибают, после чего экосистема теряет способность к самоочищению от органических загрязнений. Поэтому эффект от совместного и одновременного загрязнения водоёмов и рек органическими и токсичными веществами оказывается гораздо худшим, чем просто сумма этих воздействий (синэргетический эффект).

Другая грозная опасность — загрязнение воды нефтепродуктами. Образуемая ими маслянистая мономолекулярная пленка на поверхности волы препятствует газообмену между водой и атмосферой и, прежде всего, поступлению в воду кислорода и углекислого газа. Эта опасность угрожает не только пресноводным, но и морским акваториям. Достаточно заметить, что разлитие одной тонны нефтепродуктов приводит к 100%-ному загрязнению нескольких квадратных километров водной поверхности. Отсюда ясно, почему аварии крупных нефтеналивных танкеров, перевозящих до 100 тысяч тонн нефти, ведут к тяжелым экологическим катастрофам. Не меньшую опасность представляет собой массовое рутинное загрязнение водоёмов от сброса отработанных масел, промывки нефтеналивных ёмкостей и тому подобных действий, которые безусловно должны рассматриваться как серьёзное правонарушение.


Общая характеристика экосистемы

Термин “экосистема” предложил английский ученый – ботаник - эколог А.Тенсли в 1935г., хотя мысль о взаимосвязи и единстве организмов и среды их обитания высказывалось еще древними учеными. Лишь в конце прошлого века стали появляться публикации, включающие понятие, идентичные термину ”экосистема” , пришел одновременно в американской, западноевропейской и русской научной литературе. Так, немецкий ученый К. Мебиус в 1877г. ввел термин “биоценоз”, через 10 лет американский биолог С. Фербе опубликовал свой классический труд об озере как водной экосистеме. В.В. Докучаев в своих трудах отмечал единство живых организмов с материнской породой преобразования почв. Природа функционирует как целостная система независимо от того, о какой среде идет речь – пресноводной, морской, наземной и подземной. Но только в середине XX века была разработана общая теория систем, началось развитие нового, количественного направления экологии экосистемы. Основоположниками этого направления были Ф. Хабчинсон, Р. Маргалеф, К. Уатт, П. Петтэн, Г. Одум.

Экосистема - включает в себя все организмы (биотическое сообщество), совместно функционирующие на конкретной территории, которые взаимодействуют с физической средой таким образом, что поток энергии создает четко определенные биотические структуры и круговорот веществ между живой и неживой частями.

Состав экосистемы

В состав экосистемы входят живые организмы (их совокупность можно назвать биоценозом или биотой экосистемы), неживые (абиотичекие) факторы – атмосфера, вода, питательные элементы, свет и мертвое органическое вещество – детрит.

Все живые организмы по способу питания разделяются на две группы - автотрофов (от греческих слов аутос – сам и трофо – питание) и гетеротрофов (от греческого слова гетерос – другой).

Автотрофы используют неорганический углерод и синтезируют огранические вещества из неорганических, это - продуценты экосистемы. По источнику энергии они, в свою очередь, также делятся на две группы.

Фотоавтотрофы – для синтеза органических веществ используют солнечную энергию. Это зеленые растения, имеющие хлорофилл (и другие пигменты) и усваивающие солнечный свет. Процесс, при котором происходит его усвоение, называется фотосинтезом.

Хемоавтотрофы – для синтеза органических веществ используют химическую энергтю. Это серобактерии и железобактерии, получающие энергию при окислении соединений серы и железа. Хемоавтотрофы играют значительную роль только в экосистемах подземных вод. Их роль в наземных экосистемах сравнительно невелика.

Фитофаги (растительноядные). К ним относятся животные, которые питаются живыми растениями. Среди фитофагов есть и небольшие животные, такие, как тля или кузнечик, и гиганты, такие, как слон. Фитофаги – почти все сельскохозяйственные животные: коровы, лошади, овцы, кролики. Есть фитофаги среди водных организов, например, рыба белый амур, поедающий растения, которыми зарастают оросительные каналы. Важный фитофаг – бобер. Он питается ветками деревьев, а из стволов сооружает плотины, регулирующие водный режим территории.

Зоофаги (хищники, плотоядные). Зоофаги разнообразны. Это и мелкие животные, питающиеся амебами, червями или рачками. И крупные, такие, как волк. Хищники, питающиеся более мелкими хищниками, называются хищниками второго порядка. Есть растения – хищники (росянка, пузырчатка), которые используют в пищу насекомых.

Симбиотрофы .Это бактерии и грибы, которые питаются корневыми выделениями растений. Симбиотрофы очень важны для жизни экосистемы. Нити грибов, опутывающие корни растений, помогают всасыванию воды и минеральных веществ. Бактерии, симбиотрофы усваивают газообразный азот из атмосферы и связывают его в доступные растениям соединения (аммиак, нитраты). Этот азот называется биологическим (в отличие от азота минеральных удобрений).

К симбиотрофам относятся и микроорганизмы (бактерии, одноклеточные животные), которые обитают в пищеварительном тракте животных – фитофагов и помогают им переваривать пищу. Такие животные, как корова, без помощи симбиотрофов не способны переварить поедаемую траву.

Детритофаги – организмы, питающиеся мертвым органическим веществом. Это многоножки, дождевые черви, жуки – навозники, раки, крабы, шакалы и многие другие.

Некоторые организмы используют в пищу как растения, так и животных и даже детрит и относятся к эврифагам (всеядным) – медведь, лиса, свинья, крыса, курица, ворона, таракан. Эврифагом является и человек.

Редуценты – организмы, которые по своему положению в экосистеме близки к детритофагам, так как они тоже питаются мертвым органическим веществом. Однако редуценты – бактерии и грибы – разрушают органические вещества до минеральных соединений, которые возвращаются в почвенный раствор и снова используются растениями.

Органические вещества, созданные автотрофами служат пищей и источником энергии для гетеротрофов: консументы – фитофаги поедают растения, хищники первого порядка – фитофагов, хищники второго порядка – хищников второго порядка и т. д.Такая последовательность организмов называется пищевой цепью , ее звенья расположены на разных трофических уровнях (представляют разные трофические группы).

Для переработки трупов редуцентам нужно время. Поэтому в экосистеме всегда есть детрит – запас мертвого органического вещества. Детрит – это опад листьев на поверхности лесной почвы (сохраняются 2-3 года), ствол упавшего дерева (сохраняется 5-10 лет), гумус почвы (сохраняется сотни лет), отложения органического вещества на дне озера – сапропель – и торф на болоте (сохраняется тысячи лет). Наиболее долго сохраняющимся детритом являются каменный уголь и нефть.

Условия функционирования экосистемы

Экосистема является сложной системой. Сложные системы обладают рядом свойств, таких как эмерджентность, принцип необходимого разнообразия элементов, устойчивость, принцип неравновесности, вид обмена веществ или энергии, эволюция.

Эмерджентность (от английского emergence – неожиданно возникающий) системы – степень несводимости свойств системы к свойствам, составляющих ее элементов. Свойства системы зависят не только от составляющих ее элементов, но и от особенностей взаимодействия между ними (например, явления синергизма, когда при взаимодействии некоторых токсичных соединений получаются еще более ядовитые вещества).

Принцип необходимого разнообразия элементов сводится к тому, что любая система не может состоять из абсолютно одинаковых элементов, более того, разнообразие элементов, ее составляющих, является необходимым условием функционирования. Нижний предел разнообразия равен двум, верхний – стремится к бесконечности. Разнообразие и наличие разных фазовых состояний веществ, составляющих экосистему, определяют ее гетерогенность.

Устойчивость динамической системы и ее способность к самосохранению зависит от преобладания внутренних взаимодействий над внешними. Если внешнее воздействие на биологическую систему превосходит энергетику ее внутренних взаимодействий, то это может вызвать необратимые изменения или гибель системы. Устойчивое или стационарное состояние динамической системы поддерживается непрерывно выполняемой внешней работой, для чего необходимы приток энергии, ее преобразование в системе и отток за пределы системы.

Принцип неравновесности сводится к тому, что системы, функционирующие с участием живых организмов, являются открытыми, поэтому для них характерно поступление и отток энергии и вещества, что невозможно осуществить в условиях равновесного состояния. Следовательно, любая экосистема представляет собой открытую, динамическую, неравновесную систему.

Таблица 2.2. Поведение систем в равновесной и неравновесной областях

Неравновесное состояние Равновесное состояние
Система “адаптируется” к внешним условиям, изменяя свою структуру

Множественность стационарных состояний

Чувствительность к флуктуациям (небольшие влияния приводят к большим последствиям, внутренние флуктуации становятся большими)

Все части действуют согласованно

Фундаментальная неопределенность

Для перехода от одной структуры к другой требуются сильные возмущения или изменения граничных условий

Одно стационарное состояние

Нечувствительность к флуктуациям

Молекулы ведут себя независимо друг от друга

Поведение системы определяют линейные зависимости

Понятие равновесия является одним из основных положений в науке. С точки зрения такой науки, как синергетика (от греч. synergos – вместе действующий; междисциплинарная область исследований процессов самоорганизации и самодезорганизации в различных системах, в том числе в живых, например, в популяциях), имеются следующие различия между равновесной и неравновесной системами:

1. Система реагирует на внешние условия.

2. Поведение системы случайно и не зависит от начальных условий, но зависит от предыстории.

3. Приток энергии создает в системе порядок, следовательно, энтропия ее уменьшается.

4. Система ведет себя как единое целое.

Система может находиться в состоянии равновесности и неравновесности; при этом ее поведение существенно различается (табл. 2.2).

В соответствии со вторым законом термодинамики к равновесному состоянию приходят все закрытые системы, то есть системы, не получающие энергии извне. При отсутствии доступа энергии извне система стремится к состоянию равновесия, при котором энтропия равна нулю. В случае когда система находится в неравновесном состоянии, создаются условия формирования новых структур, для которых необходимо следующее:

1) открытость системы;

2) неравновесное ее состояние;

3) наличие флуктуаций.

Чем сложнее система, тем более многочисленны типы флуктуаций, которые могут привести ее в неустойчивое состояние. Однако в сложных системах существуют связи между частями, которые позволяют системе сохранять устойчивое состояние. Соотношением между устойчивостью, обеспечивающейся взаимосвязью между частями, и неустойчивостью из-за наличия флуктуации определяется порог устойчивости системы. Если этот порог превышается, система попадает в критическое состояние, которое называется точкой бифуркации. В данной точке система становится неустойчивой относительно флуктуаций и может перейти в новое состояние устойчивости. Это положение имеет огромное значение в эволюции экосистем. В точке бифуркации система как бы колеблется между выбором одного из нескольких путей эволюции.

Подавляющее большинство систем в природе относится к открытым, обменивающимся с окружающей средой энергией, веществом и информацией. Главенствующая роль в природных процессах принадлежит не порядку, стабильности и равновесию, а неустойчивости и неравновесности, то есть все системы флуктуируют. В точке бифуркации система не выдерживает и разрушается, и в этот момент времени невозможно предсказать, в каком состоянии она будет находиться: станет ли состояние системы хаотическим или она перейдет на новый, более высокий уровень неупорядоченности.

Принцип равновесия в живой природе играет огромную роль. Смещение равновесия между видами в одну сторону может привести к исчезновению обеих видов. Например, уничтожение хищников может привести к уничтожению жертв, давление которых на окружающую среду может возрасти до такой степени, что им не хватит пищи. В природе наблюдается огромное количество равновесий, которые поддерживают общее равновесие в природе.

Равновесие в живой природе не статично, а динамично и представляет собой движение вокруг точки устойчивости. Если данная точка устойчивости не меняется, то такое состояние называется гомеостазом (от греч. homoios-тот же самый, погожий и stasis-неподвижность, состояние). Гомеостаз – способность организма или системы поддерживать устойчивое (динамическое) равновесие в изменяющихся условиях среды.

Согласно принципу равновесия любая естественная система с проходящим через нее потоком энергии склонна развиваться в сторону устойчивого состояния. Гомеостаз, существующий в природе, осуществляется автоматически за счет механизмов обратной связи. Молодые системы с неустоявшимися связями, как правило, подвержены резким колебаниям и менее способны противостоять внешним возмущениям по сравнению со зрелыми системами, компоненты которых успели приспособиться друг к другу, то есть прошли эволюционные приспособления.

Естественное равновесие означает, что экосистема сохраняет свое стабильное состояние и некоторые параметры неизменными, несмотря на воздействие факторов внешней среды. Так как экосистема представляет собой открытую систему, то ее устойчивое состояние означает, что поступление вещества и поток энергии на входе и выходе сбалансированы.

Под воздействием на экосистему внешних факторов она переходит от одного состояния равновесия к другому. Такое состояние называется устойчивым равновесием. По многочисленным данным, экологическая обстановка на нашей планете не всегда была одной и той же. Более того, она испытывала резкие перемены всех ее компонентов. Это можно продемонстрировать на примере появления кислорода в атмосфере. Известно, что ультрафиолетовое излучение Солнца, губительное для живых организмов, породило химическую эволюцию, благодаря которой возникли аминокислоты. Под воздействием ультрафиолетового излучения процессы разложения водяного пара привели к образованию кислорода и создали слой озона, который препятствовал проникновению ультрафиолетовых лучей на поверхность Земли. До тех пор, пока не было атмосферного кислорода, жизнь могла развиваться только под защитой слоя воды, который был ограничен глубиной, на которую проникали солнечные лучи. Под воздействием давления отбора появились фотосинтезирующие организмы, которые синтезировали органическое вещество и кислород. Первые многоклеточные организмы появились после того, как содержание кислорода в атмосфере достигло 3% от современного содержания. Образование атмосферы, содержащей кислород, привело к новому состоянию устойчивого равновесия. Благодаря способности зеленых растений водных экосистем продуцировать кислород в количествах, превышающих их потребности, создались условия для возникновения жизни на суше и быстрого заселения организмами всей поверхности Земли. Это в свою очередь создало условия, при которых потребление и образование кислорода уравнялось и достигло отметки 20%. Затем наблюдались колебания отношений кислорода к углекислому газу, и, вероятно, на определенной стадии развития произошло повышение содержания углекислого газа в атмосфере, что послужило толчком к образованию ископаемого топлива. Далее соотношение кислорода и углекислого газа опять пришло в колебательное стационарное состояние. Бурное развитие промышленности, деградация и преобразование человеком экосистем, сжигание ископаемого топлива и в результате – избыточное образование углекислого газа может опять сделать это соотношение нестабильным.

Следовательно, равновесие - это неотъемлемый элемент функционирования природы, с которым человек должен считаться как с объективным законом природы, значение которого он только начинает осознавать.

По виду обмена веществом и энергией с окружающей средой системы классифицируют следующим образом: 1) изолированные системы (обмен невозможен); 2) замкнутые системы (обмен веществом невозможен, а обмен энергией может происходить в любой форме); 3) открытые системы (возможен любой обмен веществом и энергией).

Системы, которые взаимосвязаны потоками вещества, энергии и информации, носят название динамических . Любая живая система представляет собой динамическую открытую систему.

Принцип эволюции: возникновение, существование и развитие всех экосистем обусловлено эволюцией. Динамические самоподдерживающиеся системы эволюционируют в сторону усложнения и возникновения системной иерархии (образование подсистем). Эволюция любой экосистемы ведет к увеличению суммарного потока энергии, проходящей через нее. С увеличением разнообразия и сложности системы происходит ускорение эволюции, что выражается в более быстром прохождении ступеней, эквивалентных по качественным сдвигам (Акимова, Хаскин, 1998).

Все без исключения экосистемы и даже самая крупная – биосфера- являются открытыми, поэтому для своего функционирования они должны получать и отдавать энергию. По этой причине концепция экосистемы должна учитывать существование связанных между собой и необходимых для функционирования и самоподдержания потоков энергии на входе и выходе, то есть реальная функционирующая экосистема должна иметь вход и, в большинстве случаев, пути оттока переработанной энергии и веществ.

Масштабы изменений среды на входе и выходе сильно варьируются и зависят от:

Размеров системы: чем она меньше, тем больше зависит от внешних воздействий;

Интенсивности обмена: чем интенсивнее обмен, тем больше приток и отток;

Сбалансированности автотрофных и гетеротрофных процессов: чем сильнее нарушено это равновесие, тем больше должен быть приток энергии извне;

Стадии и степени развития системы: молодые системы отличаются от зрелых.

Энергия солнечного света поступает в экосистему, где фотоавтотрофными организмами превращается в химическую энергию, используемую для синтеза органических соединений из неорганических. Поток энергии направлен в одну сторону: часть поступающей энергии Солнца преобразуется сообществом и переходит на качественно более высокую ступень, трансформируясь в органическое вещество, которое представляет собой более концентрированную форму энергии, чем солнечный свет; большая же часть энергии проходит через систему и покидает ее. В принципе, энергия может накапливаться, затем высвобождаться или экспортироваться, как показано на схеме (рис. 2.1), но не может использоваться вторично.

В отличие от энергии элементы питания и вода, необходимые для жизни, могут использоваться многократно. После отмирания живых организмов органические вещества разлагаются и опять превращаются в неорганические соединения. В совокупности экосистему можно представить как единое целое, в котором биогенные вещества из абиотического компонента включаются в биотический и обратно, то есть происходит постоянный круговорот веществ с участием живого (биотического) и неживого (абиотического) компонентов.

ЭКОСИСТЕМА

Рис. 2.1 Функциональная схема экосистемы

Для стабильного и длительного функционирования экосистемы особенно важное значение имеют обратные связи, обеспечивающие ее авторегуляцию и саморазвитие. Поэтому независимо от вида системы ее функционирование возможно только при наличии прямых (взаимная стимуляция роста и развития организмов) или обратных (например, угнетение развития популяции в результате давления хищника) связей.

В саморегулирующихся системах, к которым относятся и экосистемы, важная роль принадлежит отрицательным обратным связям . На принципе отрицательной обратной связи базируются все механизмы физиологических функций в любом организме и поддержание постоянства внутренней среды и внутренних взаимосвязей любой саморегулирующейся системы.

Рассмотрим это положение на примере самоочищения водоемов. Допустим, что под влиянием внешних факторов (поступление в водоем плодородной почвы и элементов питания) началось усиленное развитие фитопланктона. Это приводит к усилению роста зоопланктона и уменьшению концентрации минеральных веществ, что способствует более быстрому выеданию фитопланктона и уменьшению его роста. Через некоторое время происходит снижение размножения животных из-за недостатка пищи. Временное увеличение биомассы гидробионтов ведет к нарастанию массы детрита, который, являясь пищей для бактерий, вызывает их усиленное размножение. Бактерии, в свою очередь, разлагают детрит и тем самым высвобождают элементы питания. Таким образом, цикл замыкается и в водоеме вновь появляются условия для усиленного развития фитопланктона. Система в целом имеет отрицательный обратный знак.

Положительные обратные связи , наоборот, не способствуют регуляции, а вызывают дестабилизацию систем, приводя их либо к угнетению и гибели, либо к ускорению роста, за которым, как правило, следуют срыв и разрушение. Например, в любом растительном сообществе плодородие почвы, урожай растений, количество отмерших растительных остатков и образовавшегося гумуса составляет контур обратных положительных связей. Такая система находится в неустойчивом равновесии, так как потеря почвы и элементов питания в результате эрозии или изъятие части урожая без возмещения выноса питательных веществ дает толчок к снижению плодородия почв и продуктивности растений. С этим явлением столкнулись наши предки в эпоху подсечно-огневого земледелия, когда в результате изъятия продукции без возмещения выноса резко снижалось плодородие почв, что вынуждало людей оставлять одни участки и осваивать новые.

В сложных экосистемах всегда имеется сочетание контуров обоих знаков. В случае наличия контуров с большим числом связей реализуется правило, которое гласит: при четном числе последовательных отрицательных связей контур приобретает положительную обратную связь (минус и минус дают плюс). Однако развитие и устойчивое функционирование экосистем в итоге определяется наличием контуров обратной связи. Для изменения поведения системы важное значение имеет добавление или изъятие связей, которые могли бы изменить знак системы.

Таким образом, составляющие экосистемы – это поток энергии, круговорот веществ, биотический и абиотический компоненты и управляющие петли обратной связи.

Водной называется экосистема, для которой естественной средой обитания является вода. Именно она определяет уникальность той или иной экосистемы, видовое разнообразие и ее устойчивость.

Главные факторы, которые влияют на водную экосистему:

  1. Температура воды
  2. Ее химический состав
  3. Количество солей в воде
  4. Прозрачность воды
  5. Концентрация в воде кислорода
  6. Доступность питательных веществ.

Компоненты водной экосистемы делятся на два вида: абиотические (вода, свет, давление, температура, состав почвы дня, состав воды) и биотеческие. Биотика, в свою очередь, разделяется на следующие подвиды:

Продуценты — организмы, производящие органические вещества с помощью солнца, воды и энергии. В водных экосистемах продуцентами являются водоросли, в мелководных водоемах — прибрежные растения.

Редуценты — организмы, потребляющие органику. Это разнообразные виды морских животных, птиц, рыб, земноводных.

Основные типы водных экосистем

В экологии водные экосистемы принято разделять на пресноводные и морские. В основе этого деления лежит показатель солености воды. Если в литре воды содержится более 35% солей — это морские экосистемы.

К морским относятся океаны, моря, соленые озера. К пресноводным — реки, озера, болота, пруды.

Еще одна классификация водных экосистем базируется на таком признаке, как условия создания. Здесь выделяют природные и искусственные. Природные созданы при участии сил природы: моря, озера, реки, болота. Искусственные водные экосистемы создает человек: искусственные пруды, водохранилища, дамбы, каналы, водные фермы.

Естественные водные экосистемы

Пресноводные экосистемы

Пресноводные экосистемы — это реки, озера, болота, пруды. Все они занимают лишь 0,8% поверхности нашей планеты. Хотя в пресных водоемах обитает более 40% известных науке рыб, пресноводные экосистемы все равно значительно уступают в видовом разнообразии морским.

Главным критерием отличия пресноводных водоемов является скорость течения воды. В этой связи выделяют стоячие и проточные. К стоячим относятся болота, озера и пруды. К проточным — реки и ручьи.
Для стоячих водных экосистем характерна ярко выраженное распределение биотических организмов в зависимости от слоя воды:

В верхнем слое (литорали) главным компонентом является планктон и прибрежные заросли растений. Это царство насекомых, личинок, здесь обитают черепахи, амфибии, водоплавающие птицы, млекопитающие. Верхний слой водоемов является охотничьими угодьями для цапель, журавлей, фламинго, крокодилов, змей.

Средний слой водоема называется профундаль. Он получает намного меньше солнечного света, а питанием служат вещества, оседающие их верхнего слоя воды. Здесь обитают хищные рыбы.

Нижний слой воды называется бенталь. Огромную роль играет состав почвы, ила. Это место обитания придонных рыб, личинок, моллюсков, ракообразных.

Морские экосистемы

Самой большой морской экосистемой является Мировой океан. Он подразделяется на более мелкие: океаны, моря, соленые озера. Все они занимают свыше 70% поверхности нашей планеты и являются важнейшей составляющей частью гидросферы Земли.

В морских экосистемах главным компонентом, продуцирующим кислород и питательные вещества, является фитопланктон. Он формируется в верхнем слое воды и под действием солнечной энергии вырабатывает питательные вещества, которые потом оседают в более глубокие слои водоема и служат питанием для остальных организмов.

Большие морские экосистемы — это океаны. В открытом океане видовое разнообразие невелико по сравнению с прибрежными зонами. Основная масса живых организмов сосредоточена на глубинах до 100 метров: это различные виды рыб, моллюсков, кораллы, млекопитающие. В прибрежных зонах морских экосистем видовое разнообразие дополняется многочисленными видами морских животных, амфибий, птиц.

В прибрежных зонах морских экосистем выделяют более мелкие (по территории): мангровые болота, шельфы, лиманы, лагуны, солончаки, коралловые рифы.

Места на побережье, где морская вода смешивается с пресной (устья рек), называются эстуариями. Видовое разнообразие здесь достигается максимума.

Все морские экосистемы весьма устойчивы, способны сопротивляться вмешательству человека и быстро восстанавливаются после антропогенного влияния.

Искусственные водные экосистемы

Все искусственные водные экосистемы созданы человеком для удовлетворения собственных нужд. Это разнообразные пруды, каналы, заводи, водохранилища. К более мелким относят океанариумы, аквариумы.

Для искусственных водных экосистем характерны следующие черты:

  • Малое количество видов растений и животных
  • Сильная зависимость от деятельности человека
  • Неустойчивость экосистемы, так как ее жизнеспособность зависит от влияния человека.

Часть 3. Экология экосистем

При популяционном подходе эколог ставит задачей выяснить причины, которые объясняют распределение популяций в пространстве, их размер, динамику и другие признаки. При экосистемном подходе перед исследователем стоит более сложная задача – изучить процессы трансформации вещества и потоки энергии в экосистеме, которые происходят при участии организмов.

Глава 10. Концепция экосистемы

Р. Линдеман (Lindeman, 1942) рассматривал экосистему как «…систему физико-химико-биологических процессов, протекающих в пределах некоторой пространственно-временной единицы любого ранга». Несмотря на такую функциональную направленность экосистемного подхода, большое значение имеет изучение видового состава экосистем и их пространственной и временной структуры. В этих внешних признаках проявляется сущность процессов трансформации вещества и энергии.

10.1. Определение экосистемы

Понятие «экосистема» предложил А. Тенсли в 1935 г., однако как отмечает А.М. Гиляров, «…четкого общепринятого определения экосистемы не существует, но обычно считается, что это совокупность разных обитающих вместе организмов, а также физических и химических компонентов среды, необходимых для их существования или являющихся продуктами их жизнедеятельности» (1990, с. 5).

К настоящему времени сложилось два понимания экосистемы: узкое и широкое.

При узком (традиционном) понимании как экосистемы рассматривают только такие совокупности организмов и условий среды, в которых имеется режим саморегуляции. При таком понимании к экосистемам относятся естественные леса, озера, массивы болот, моря и т.д. Если эти экосистемы нарушить (разумеется, до определенного предела), то они восстановят себя если не в прежнем составе, то, во всяком случае, в близком к прежнему. Узкий объем понятия экосистемы первичен и уходит корнями в представления А. Тенсли.

При широком понимании (Одум, 1986) к экосистемам относятся любые совокупности взаимодействующих организмов и условий среды их обитания вне зависимости от того, имеется в них механизм саморегуляции или нет. В этом случае как экосистема может быть рассмотрен город, сельскохозяйственная ферма, лесопосадка, кабина космического корабля и т.д. В учебнике принято широкое понимание экосистемы как более удобное.

Экосистема не имеет территориального ранга. К числу экосистем могут быть отнесены муравейник, овраг, озеро, горный хребет, Тихий океан, евроазиатский материк, биосфера. Возможно построение иерархии экосистем: внутри крупной экосистемы могут быть выделены экосистемы более низких рангов. К примеру, в черте городской экосистемы выделяются экосистемы селитебной территории, лесопарка, крупных предприятий.

Следует специально остановиться на соотношении понятий «экосистема», «биогеоценоз» и «ландшафт». Они имеют «параллельное хождение» в науке и их объем перекрывается. Понятие «биогеоценоз» в 1942 г. было предложено В.Н. Сукачевым первоначально в противовес понятию «экосистема», которое в соответствии с менталитетом науки этого времени считалось буржуазным. Однако со временем стало очевидно, что понятие «биогеоценоз» не может заменить понятие «экосистема». Если экосистема – понятие безранговое, то биогеоценоз имеет определенный ранг: это однородный участок наземной (но не водной!) экосистемы, границы которого проведены по границам фитоценоза, выступающего в роли маркера этой единицы.

Географический ландшафт также соответствует экосистеме определенного ранга – достаточно крупному однородному географическому единству (с одним типом рельефа и климата, закономерным сочетанием почв и растительности), в пределах которого выделяются более дробные экосистемные единицы – урочища («подландшафты») и фации (соответствуют биогеоценозам).

Определенным рангом экосистемы является и широко используемое в отечественной географии понятие «природно-территориальный комплекс» (ПТК).

Контрольные вопросы

1. Что отличает экосистемный подход в экологии от популяционного?

2. Расскажите об узкой и широкой трактовке понятия «экосистема».

3. Каково соотношение объемов понятий «экосистема», «биогеоценоз», «географический ландшафт», «урочище», «фация», «ПТК»?

10.2. Функциональные блоки экосистемы

Несмотря на то, что в составе экосистемы могут быть тысячи видов, по функциональной роли эти виды можно объединить в ограниченное число функциональных типов – продуцентов, консументов и редуцентов, которые различал еще АЛавуазье (без использования этих терминов). Эти типы хрестоматийны и потому ограничимся их краткой характеристикой.

Продуценты – это автотрофы, т.е. организмы, синтезирующие органические вещества из неорганического углерода.

Продуценты-фотоавтотрофы – растения. Кроме того, в океане важную роль также играют цианобактерии. Фотоавтотрофы осуществляют фотосинтез из углекислого газа и воды с выделением кислорода, используя солнечную энергию. В состав этой разнообразной группы организмов входят гиганты, подобные секвойе и эвкалипту, и микроскопические планктонные водоросли, являющиеся основными продуцентами водных экосистем. Цианобактерии способны, кроме того, фиксировать атмосферный азот. Существуют и продуценты-фотоавтотрофы, которые осуществляют фотосинтез без выделения кислорода (пурпурные бактерии), однако их общий вклад в биологическую продукцию экосистемы невелик.

Продуценты–хемоавтотрофы (серобактерии, метанобактерии, железобактерии, бактерии-нитрификаторы и др.) для синтеза органических веществ используют химическую энергию окисления неорганических соединений. Эти организмы являются продуцентами экосистем в гидротермальных оазисах, образующихся в так называемыхрифтовых зонах океана – областях разлома земной коры, из трещин, образующихся между плитами, выделяется сероводород, и в экосистемах подземных вод. Они играют важную роль в биогеохимическом преобразовании земной коры (обитают в подземных водах на глубине до 3-5 км). К этой же группе относятся почвенные бактерии-нитрификаторы, которые окисляют аммоний и нитриты.

Консументы - это организмы, которые используют готовое органическое вещество в живом или мертвом состоянии. Этот блок включает следующие функциональные группы.

Фитофаги - растительноядные организмы. Эта разнообразная группа в наземных экосистемах включает самые разные таксоны – от насекомых (например, термитов, которые являются основными фитофагами в тропических лесах) до крупных млекопитающих, подобных лосю, жирафу и слону. В водных экосистемах основными фитофагами являются мелкие организмы зоопланктона (так называемый растительноядный планктон).

Зоофаги - хищники. Как и фитофаги, зоофаги варьируются от крупных (лев, волк) до микроскопических (рачки зоопланктона). Хищники разделяются на типичных хищников, которые убивают жертву (например, волк или сокол), и хищников с пастбищным типом питания, которые, не убивая жертву, используют ее длительное время (например, оводы, слепни).

Симбиотрофы – микроорганизмы (грибы, бактерии, одноклеточные простейшие), которые связаны отношениями взаимовыгодного сотрудничества с растениями или животными (грибы микоризы, клубеньковые бактерии бобовых, бактерии и простейшие (амебы) пищеварительного тракта млекопитающих, включая человека). Они питаются прижизненными выделениями организмов (у растений) или участвуют в пищеварении (у животных).

Детритофаги – это животные, питающиеся детритом (мертвыми тканями растений и животных или экскрементами). Разнообразие этих организмов было рассмотрено в разделе 8.7.

Редуценты (деструкторы) – это бактерии и грибы, которые в ходе жизнедеятельности превращают органические остатки в неорганические вещества, обеспечивая возвращение содержащихся в них элементов в почвенный раствор или в воду (в водных экосистемах), откуда они повторно потребляются растениями. Благодаря редуцентам в атмосферу возвращается большая часть углекислого газа, потребленного в процессе фотосинтеза, а также образуется метан при анаэробном разложении органического вещества в условиях повышенной влажности.

Разделение организмов, питающихся мертвым органическим веществом (сапротрофов), на детритофагов и редуцентов условно. Так до 40% бактерий водных экосистем, образующих бактериальный планктон, поедается в живом состоянии, т.е. являются не редуцентами, а детритофагами. Они не поставляют ресурсы для растений, а сами являются пищевым ресурсом для консументов следующего трофического уровня (т.е. с них начинаются детритные пищевые цепи).

Животные-детритофаги, размельчая органические остатки, облегчают «работу» редуцентов и тем самым участвуют в процессе разложения органического вещества. Наконец, любой детритофаг является еще и «хищником», поскольку, по словам М. Бигона, “питается сухим печеньем, намазанным арахисовым маслом» (потребляет мертвое органическое вещество вместе с поселившимися на нем живыми бактериями).

Контрольные вопросы

1. Охарактеризуйте основные функциональные типы организмов, входящих в состав экосистемы.

2. Расскажите о разнообразии консументов.

3. Чем отличаются типичные хищники от хищников с пастбищным типом питания?

3. В чем заключается условность разделения детритофагов и редуцентов, детритофагов и хищников?

10.3. Классификация экосистем

При широком объеме понятия «экосистема» оно становится родовым, в рамках которого устанавливается несколько видов (типов) экосистем, различающихся по источнику энергии и функциональной структуре, а также по вкладу в их организацию человека (табл. 9).


Таблица 9 Классификация экосистем


По типу обеспечения энергией и источнику углерода экосистемы разделяются на автотрофные и гетеротрофные. В состав автотрофных экосистем входят продуценты, которые обеспечивают веществом и энергией гетеротрофную биоту экосистемы. В составе гетеротрофных экосистем продуцентов нет, или они играют незначительную роль, и органические вещества поступают в них извне. Таким образом, существование гетеротрофных экосистем всегда зависит от деятельности автотрофных экосистем, так как иного органического вещества, кроме как произведенного организмами автотрофных экосистем, быть не может. Это органическое вещество может быть детритом, представляющим биологическую продукцию не только современных экосистем, но и экосистем, которые существовали в далеком прошлом (уголь, нефть, газ).

Впрочем, это разделение довольно условно. Существуют автотрофно-гетеротрофные экосистемы. В этих экосистемах, наряду с солнечной энергией и неорганическим углеродом, используемыми продуцентами, значительную роль играет энергия, фиксированная в «готовом» органическом веществе, поступающем извне (например экосистемы небольших лесных озер, в которые падают листья и другой лесной детрит; озера, в которые поступают органические вещества со стоками).

Разделение экосистем на естественные и искусственные (антропогенные), создаваемые человеком, также относительно. Например интенсивно используемое пастбище является одновременно естественным и искусственным: устойчивые к выпасу виды отобрались из естественной луговой или степной экосистемы, но под влиянием хозяйственной деятельности человека. Человек влияет даже на заповедные экосистемы, получающие свою долю кислотных дождей и других загрязняющих веществ, которые переносятся в атмосфере на большие расстояния.

Контрольные вопросы

1. Разъясните содержание основного подхода для классификации экосистем по источнику энергии и роли человека.

2. Приведите примеры экосистем, которые представляют переход от естественной к антропогенной.

3. Приведите примеры естественных гетеротрофных экосистем.

4. Охарактеризуйте разнообразие антропогенных экосистем.

5. Приведите примеры экосистем, которые представляют переход от автотрофной к гетеротрофной.

10.4. Энергия в экосистеме. Пищевые цепи

Основу «работы» экосистемы составляют два связанных процесса: круговорот веществ, который осуществляется благодаря деятельности продуцентов, консументов и редуцентов, и протекание через нее потока энергии, поступающей извне. Энергия используется однократно и расходуется на «раскручивание» круговоротов веществ. Круговороты веществ в конкретной экосистеме и биосфере имеют сходную природу, и потому мы рассмотрим их в главе 13. В этом разделе мы познакомимся с закономерностями протекания энергии через экосистему.

Физики определяют энергию как способность производить работу или теплообмен между двумя объектами, обладающими разной температурой. Энергия является основой «работы» любой экосистемы, в которой происходят синтез и многократные преобразования веществ.

Основным источником энергии является Солнце. Даже гетеротрофные экосистемы используют солнечную энергию, хотя и через посредника, в роли которого выступает автотрофная экосистема, поставляющая для нее органические вещества. Ю. Одум (1986) даже определил экологию как науку, которая «…изучает связь между светом и экологическими системами и способы превращения энергии внутри экосистемы» (с. 106).

Поток солнечной энергии постоянно протекает через фотоавтотрофные организмы, причем при передаче энергии от одного организма к другому в пищевых цепях происходит ее рассеивание в виде тепла. Из поступающей на Землю энергии Солнца экосистемой усваивается не более 2% (в экспериментальных культурах морских планктонных водорослей удалось достичь уровня фиксации солнечной энергии 3,5%). Большая часть энергии используется на транспирацию, отражается листьями, идет на нагревание атмосферы, воды и почвы (см. 2.2.2).

Последовательность организмов, в которой каждый предыдущий организм служит пищей последующему, называется пищевой цепью. Каждое звено такой цепи представляет трофический уровень (растения, фитофаги, хищники I порядка, хищники II порядка и т.д.).

Различают два типа пищевых цепей: пастбищные (автотрофные), в которых в качестве первого звена выступают растения (трава – корова – человек; трава – заяц – лисица; фитопланктон – зоопланктон – окунь – щука и др.), и детритные (гетеротрофные), в которых первое звено представлено мертвым органическим веществом, которым питается детритофаг (опавший лист – дождевой червь – скворец – сокол).

Количество звеньев в пищевых цепях может быть от одного–двух до пяти–шести. Пищевые цепи в водных экосистемах, как правило, более длинные, чем в наземных.

Поскольку большинство организмов имеет широкую диету (т.е. может использовать в пищу организмы разных видов), то в реальных экосистемах функционируют не пищевые цепи, а пищевые сети. По этой причине пищевая цепь – это упрощенное выражение трофических отношений в экосистеме.

Эффективность передачи энергии по пищевой цепи зависит от двух показателей:

1. от полноты выедания (доли организмов предшествующего трофического уровня, которые были съедены живыми);

2. от эффективности усвоения энергии (удельной доли энергии, которая перешла на следующий трофический уровень в пересчете на каждую единицу съеденной биомассы).

Полнота выедания и эффективность усвоения энергии возрастают с повышением трофического уровня и меняются в зависимости от типа экосистемы.

Так в лесной экосистеме фитофаги потребляют менее 10% продукции растений (остальное достается детритофагам), а в степи – до 30%. В водных экосистемах выедание фитопланктона растительноядным зоопланктоном еще выше – до 40%. Этим объясняются основные краски Земли на космических снимках: леса зеленые именно потому, что фитофаги съедают мало фитомассы, а океан голубой, оттого что фитофаги выедают достаточно много фитопланктона (Polis, 1999).

При оценке коэффициента усвоения энергии в пищевых цепях часто используют «число Линдемана»: с одного трофического уровня на другой в среднем передается 10% энергии, а 90% – рассеивается. Однако это «число» чрезмерно упрощает и даже искажает реальную картину. «Закон 10%» действует только при переходе энергии с первого трофического уровня на второй, и то не во всех случаях. Эффективность усвоения энергии в следующих звеньях пищевой цепи – от фитофагов к зоофагам или к хищникам высших порядков – может достигать 60%.

Высокой эффективностью усвоения энергии в «плотоядных» звеньях пищевых цепей объясняется сравнительно небольшое количество экскрементов хищников и ограниченность состава сапротрофов (редуцентов, копрофагов), питающихся ими. Основная фауна копрофагов связана с экскрементами растительноядных животных. Кстати, о том, что при хищничестве эффективность усвоения энергии выше, чем при фитофагии, знает каждый из личного опыта: вегетарианский обед из овощей или картофеля велик по объему, но малокалориен, а сравнительно небольшой по весу бифштекс утолит голод и надолго обеспечит ощущение сытости.

Таким образом, в пищевой цепи на каждом следующем трофическом уровне относительное количество передаваемой энергии возрастает, так как одновременно увеличивается и потребление живой биомассы, и ее усвоение (уменьшается доля биомассы, которая возвращается в экосистему с экскрементами).

Поведение энергии подчиняется действию первого и второго законов термодинамики.

Первый закон (сохранения энергии) – о сохранении ее количества при переходе из одной формы в другую. Энергия не может появиться в экосистеме сама собой, она поступает в нее извне с солнечным светом или вследствие химических реакций и усваивается продуцентами. Далее она будет частично использована консументами и симбиотрофами, «обслуживающими» растения, частично – редуцентами, которые разлагают мертвые части растений, и частично – затрачена на дыхание. Если суммировать все эти фракции расхода энергии, усвоенной растениями в фотоавтотрофной экосистеме, то сумма будет равна той потенциальной энергии, которая накоплена при фотосинтезе.

Второй закон – о неизбежности рассеивания энергии (т.е. снижения ее «качества») при переходе из одной формы в другую. В соответствии с этим законом энергия теряется при ее передаче по пищевым цепям. В наиболее общем виде эти потери отражает «число Линдемана».

Контрольные вопросы

1. Что такое энергия?

2. Какое количество солнечной энергии может усвоить экосистема?

3. Что такое пищевая цепь?

4. Что такое трофический уровень?

5. Приведите примеры пастбищных и детритных пищевых цепей.

6. Из какого числа звеньев состоят пищевые цепи в наземных и водных экосистемах?

7. Чем отличаются понятия «пищевая цепь» и «пищевая сеть»?

8. В каких пределах меняется полнота выедания организмов на разных трофических уровнях и в разных экосистемах?

9. Как меняется эффективность усвоения энергии организмами с повышением их трофического уровня?

10. Проиллюстрируйте действие законов термодинамики при «работе» экосистемы.

10.5. Детрит в экосистеме

Детрит – мертвое органическое вещество, временно исключенное из биологического круговорота элементов питания. Время сохранения детрита может быть коротким (трупы и экскременты животных в теплом климате перерабатываются личинками мух за несколько дней, листья в лесу – за несколько месяцев, стволы деревьев – за несколько лет) или очень долгим (гумус, сапропель, торф, уголь, нефть).

Детрит – запасник питательных веществ в экосистеме, необходимая составляющая ее нормального функционирования. Как уже отмечалось, существуют специальные организмы – детритофаги, которые питаются детритом.

Рассмотрим основные виды детрита.

Гумус – темноокрашенное органическое вещество почвы, которое образуется в результате биохимического разложения растительных и животных остатков и накапливается в верхнем (гумусовом) почвенном горизонте. Большая часть гумуса (85-90%) представлена собственно гумусовыми веществами – гумином, фульвокислотами, гуминовыми кислотами и др., остальное – менее разложившимися растительными и животными остатками. Содержание углерода в гумусе составляет около 50%. Количество гумуса поддерживается двумя противоположно направленными микробиологическими процессами – гумификацией (анаэробный процесс превращения остатков животных и растений в гумус) и минерализацией (аэробный процесс разрушения гумуса до простых органических и минеральных соединений). В почвах естественных экосистем эти процессы находятся в равновесии, и содержание гумуса в почве поддерживается постоянным. Гумус – основа плодородия почвы.

При вмешательстве человека (например при вспашке почвы) процессы минерализации начинают преобладать, что ведет к снижению содержания гумуса и поступлению в атмосферу диоксида углерода, который вносит существенный вклад в усиление парникового эффекта (см. 13.2.1).

Разные типы почв отличаются содержанием гумуса и мощностью гумусового горизонта. Наиболее богаты гумусом черноземы, его содержание в этих почвах может достигать 10% (в прошлом в отдельных районах РФ и Украины оно достигало 16%), а мощность гумусового горизонта – 1 м. Наиболее бедны гумусом подзолистые и каштановые почвы. Мощность гумусового горизонта у них составляет 5–15 см, а содержание гумуса – 1–2%. Переходное положение между подзолистыми почвами и черноземами занимают серые лесные почвы, а между черноземами и каштановыми – темнокаштановые. В расположенных южнее каштановых бурых пустынных почвах содержание гумуса составляет менее 1%. Очень богаты гумусом почвы влажных местообитаний – луговые и влажнолуговые.

В разных типах почв гумус различается по подвижности: наиболее трудно минерализуется гумус черноземов (В.В. Докучаев назвал за это черноземы «скупым рыцарем»), а наиболее легко – в почвах тропических влажных лесов. Запас гумуса в тропических почвах невелик (мощность гумусового горизонта составляет несколько сантиметров, а содержание гумуса в нем – не более 4%), тем не менее за счет быстрого круговорота веществ эти экосистемы дают высокую биологическую продукцию (см. 10.6).

Лесная подстилка – слой детрита на поверхности лесной почвы, образованный в основном опавшими листьями и веточками деревьев. Подстилка играет важную роль в жизни лесной экосистемы. В подстилке сконцентрировано значительное число видов-детритофагов, а также редуцентов, представленных в основном грибами. Подстилка впитывает влагу дождей и тающего снега, что уменьшает поверхностный сток воды, а в горных лесах снижает вероятность развития эрозии почвы. Подстилка играет роль фильтра, который задерживает вещества, содержащиеся в воде (остатки удобрений, пестицидов, тяжелые металлы и т.д.). По этой причине вода лесных родников всегда достаточно чистая. По своей роли в экосистеме к лесной подстилке близка ветошь – сухие побеги растений в степи (степной войлок).

Отношение массы лесной подстилки (или ветоши в травяных сообществах) к годовому опаду листьев и веток служит показателем скорости разложения детрита. Чем выше этот индекс, тем ниже интенсивность круговорота веществ. Запас опада (т/га) и индекс скорости его разложения (годы) составляют: в тундрах – 44 (50), в тайге – 14 (10–17), в широколиственных лесах 14 (3–4), в саванне – 3 (1), в степи – 3 (2), во влажных тропических лесах – 3 (0,1).

Торф – это слабо разложившиеся растительные остатки, которые накапливаются в болотной экосистеме. Под микроскопом нетрудно идентифицировать остатки растений видам, сформировавшим торф. Болота разных типов формируют торф разной степени богатства минеральными и органическими веществами. Наиболее богат минеральными веществами торф низинных болот, наиболее беден – верховых.

Донные осадки (сапропель) – отложения на дне континентальных водоемов, которые состоят из органических остатков, смешанных с минеральными осадками. В отличие от гумуса, который постоянно участвует в круговороте веществ в экосистеме, донные осадки – достаточно консервативное образование, в круговороте участвует лишь самая верхняя их часть, слой толщиной не более 5 см, а весь остальной детрит практически исключается из круговорота. Это, кстати, объясняет феномен самоочищения водоемов: загрязняющие вещества, попав на дно с умершим планктоном, захораниваются там и не вовлекаются в круговорот. Значительное накопление органического вещества на дне озер происходит только там, где создается анаэробная зона, в которой бактерии расходуют весь кислород и скорость минерализации органического вещества резко снижается. Вероятность возникновения дефицита кислорода в воде тем выше, чем продуктивнее экосистема (см. 11.1).

На дне водохранилищ, созданных на реках, интенсивно загрязняемых городами и промышленными предприятиями, «законсервированы» огромные массы токсичных осадков, что, кстати, служит основным аргументом против ликвидации этих водохранилищ.

Контрольные вопросы

1. Какую роль играет детрит в экосистеме?

2. Перечислите основные формы детрита.

3. Как меняется содержание гумуса в разных почвах?

4. Какую функциональную роль в лесной экосистеме выполняет подстилка?

5. Какие факторы способствуют накоплению донных осадков?

10.6. Биологическая продукция и запас биомассы

Биологическая продукция – скорость накопления биомассы в экосистеме, отражающая способность организмов производить органическое вещество в процессе своей жизнедеятельности.

Биологическая продукция измеряется количеством органического вещества, создаваемого за единицу времени на единицу площади (т/га/год, кг/кв. м/год, г/кв. м/день и т.д.).

Различают первичную (создаваемую растениями и другими автотрофами) и вторичную (создаваемую гетеротрофами) биологическую продукцию. В составе первичной продукции различается валовая (т.е. общая продукция фотосинтеза) и чистая биологическая продукция – «прибыль», которая остается в растениях после затрат на дыхание и выделение органического вещества из корней в почву (эти вещества используются симбиотрофами) и водорослями фитоплактона в воду (эти вещества усваиваются бактериями).

Соотношение валовой и чистой первичной биологической продукции зависит от благоприятности условий среды: чем условия лучше, тем затраты на дыхание и содержание «обслуживающего персонала» ниже. В благоприятных условиях чистая продукция может составлять до 50% от валовой, в неблагоприятных – 5-10% (Рахманкулова, 2002).

Р. Уиттекер (1980) по первичной биологической продукции (в сухом веществе) разделяет экосистемы на четыре класса:

– очень высокая (свыше 2 кг/м 2 в год). Такая продукция характерна для влажных тропических лесов, коралловых рифов, геотермальных «оазисов» рифтовых зон глубоководий океана, плавней – высоких и густых зарослей тростника в дельтах Волги, Дона и Урала;

– высокая (1–2 кг/м 2 в год). Это липово-дубовые леса, прибрежные заросли рогоза или тростника на озере, посевы кукурузы и многолетних трав, если используются орошение и минеральные удобрения;

– умеренная (0,25–1 кг/м 2 в год). Преобладающая часть сельскохозяйственных посевов, сосновые и березовые леса, сенокосные луга и степи, заросшие водными растениями озера, «морские луга» из водорослей;

– низкая (менее 0,25 кг/м 2 в год). Это пустыни жаркого климата, арктические пустыни островов Северного Ледовитого океана, тундры, полупустыни Прикаспия, вытоптанные скотом степные пастбища с низким и редким травостоем, каменистые степи. Такую же низкую продукцию имеет большинство морских экосистем зоны пелагиали (см. 11.2).

Средняя биологическая продукция экосистем Земли не превышает 0,3 кг/м 2 в год, так как на планете преобладают низкопродуктивные экосистемы пустынь и океанов.

Биомасса – это запас (количество) живого органического вещества (растений, животных, грибов, бактерий), «капитал» экосистемы, который разделяется на фитомассу (массу растений), зоомассу (массу животных), микробную массу. Средняя биомасса на единице поверхности суши составляет 0,5 кг/га.

Основной химический элемент в биомассе – углерод, 1 г органического углерода соответствует в среднем 2,4 г сухой биомассы. В биомассе на 100 частей углерода приходится 15 частей азота и 1 часть фосфора. Однако соотношение углерода и азота различается в биомассах животных и растений, что и объясняет их разное качество как пищевого ресурса (см. 2.2.1).

Кроме углерода, азота и фосфора, в биомассе содержится много кислорода, водорода и серы. (Вспомните слово «CHNOPS», см. 2.2.1.)

Поскольку длительность жизни разных организмов различна, то биомасса может быть больше годичной продукции (в лесах – в 50 раз, в степи – в 3-5 раз), равна ей (в сообществах культурных однолетних растений) или меньше (в водных экосистемах, где преобладают короткоживущие организмы планктона, дающие несколько поколений за год).

Обычно биомасса растений больше биомассы животных, хотя из этого правила есть исключения. Например в водоемах масса зоопланктона может быть больше массы фитопланктона, так как жизнь водорослей фитопланктона менее продолжительна, чем жизнь организмов зоопланктона (за время жизни планктонного рачка может смениться до 4 поколений водорослей).

Соотношение величины биомассы разных трофических уровней отражается экологическими пирамидами. Пирамиды биомассы наземных экосистем всегда имеют широкое основание и сужаются с повышением трофического уровня. Пирамиды биомассы водных экосистем могут иметь форму юлы (рис. 20): максимальная биомасса сосредоточена в среднем трофическом уровне зоопланктона, организмы которого живут дольше, чем одноклеточные водоросли фитопланктона. На высших уровнях нектона (рыб) также происходит снижение биомассы.



Рис. 20. Экологические пирамиды биомассы наземной и водной экосистем.


В структуре биомассы различают биомассу надземной и подземной части экосистемы. В большинстве экосистем подземная биомасса растений превышает надземную, причем у луговых сообществ в 3–10 раз, в степных в 30–50, в пустынных в 50–100 раз. Исключение составляют леса, где надземная биомасса значительно превышает подземную. Подземная биомасса животных всегда во много раз больше, чем надземная. В агроценозах надземная и подземная биомасса могут быть примерно равными, а в лесах надземная биомасса превышает подземную.

Круговорот органического вещества в биосфере происходит в среднем за 4 года. В разных экосистемах этот показатель сильно различается: в водных экосистемах круговорот происходит в 1000–2000 раз быстрее, чем в лесу.

Контрольные вопросы

1. Что такое первичная и вторичная биологическая продукция?

2. Как различается величина первичной и вторичной биологической продукции в разных экосистемах?

3. В каких пределах меняется биологическая продукция разных экосистем?

4. Какова средняя величина биологической продукции экосистем Земли?

5. Сравните понятия «биологическая продукция» и «биомасса».

6. Как меняется соотношение биологической продукции и биомассы в разных экосистемах?

7. Каков усредненный химический состав биомассы планеты?

8. Что такое экологическая пирамида? Какие варианты экологических пирамид Вы знаете?

9. Сравните экологические пирамиды наземной и водной экосистемы.

10. С какой скоростью происходит круговорот биомассы в разных экосистемах?

10.7. Состав биоты (биоразнообразие) экосистемы

Несмотря на то, что для эколога экосистема – это в первую очередь явление функциональное, которое оценивается по интенсивности потока энергии, протекающей через нее, характеру круговоротов веществ, величине биологической продукции (первичной и вторичной), важную роль играет изучение биоты – живого населения экосистемы, в которой в конечном итоге отражается ее функция.

Биота большинства экосистем имеет сложный состав, представленный большим числом разных таксонов. К примеру, биота наземных экосистем включает растения (низшие и высшие), огромное разнообразие видов животных, грибов и бактерий. Это разнообразие в принципе можно учесть, но никто никогда этого не делал. Чтобы осуществить полный учет биоты только одной экосистемы, потребуется участие в работе нескольких десятков специалистов по разным таксонам растений (мхов, споровых сосудистых, голосеменных, цветковых), грибов, лишайников, животных (разные группы простейших, насекомых, птиц, млекопитающих и т.д.), бактерий. Результат работы такой научной команды будет стоить очень дорого, а его научная значимость окажется невысокой (так как будет не более чем иллюстрацией, представляющей всего лишь одну из экосистем). Затраты на изучение многих экосистем для выявления общих закономерностей связи биоразнообразия с условиями среды будут нереально высокими.

Обычно биоразнообразие экосистемы определяют примерно по числу входящих в нее видов растений, т.е. по видовому богатству растительных сообществ. В разных экосистемах число видов гетеротрофов, связанных с одним видом растений, возрастает от нескольких десятков до нескольких сотен. Несмотря на то, что такие «валовые» данные очень приблизительны, принцип «разнообразие порождает разнообразие» является основным для общей количественной оценки биоты экосистем.

Впрочем, вопрос о закономерностях формирования видового богатства растительных сообществ, на основании которого «прикидывают» состав гетеротрофов (консументов и редуцентов), однозначно решить не удается. Р. Уиттекер (1980) писал о том, что видовое богатство – наиболее трудно прогнозируемая характеристика растительного сообщества.

Основные факторы, которые влияют на видовое богатство разных растительных сообществ и, соответственно, на экосистемы, следующие.

1. “Пул”, т.е. потенциальный запас видов в данном районе, общее богатство флоры, из состава которой могут отбираться виды для формирования того или иного сообщества.

2. Благоприятность условий для произрастания растений, формирующих фитоценоз («инвайронментальное сито»).

3. Переменность режимов среды. При меняющихся режимах среды (в первую очередь увлажнения) видовое богатство повышается. Этим объясняется очень высокое видовое богатство северных степей (более 100 видов растений на 1 м 2).

4. Наличие растения-виолента. При его появлении видовое богатство резко снижается. Пример тому – буковые леса, почти лишенные напочвенного покрова, и бедные видами сообщества тростника в дельтах рек.

5. Режим нарушений. Умеренный режим нарушений препятствует усилению роли виолентов и тем самым способствует повышению видового богатства (гипотеза «высокого видового богатства при умеренных нарушениях»).

6. “Карусели” (van der Maarel, Sykes, 1993) – мелкомасштабные циклические изменения сообществ, в ходе которых несколько видов со сходной конкурентной способностью поочередно занимают одну и ту же экологическую нишу. «Карусели» наиболее наглядны в лесных сообществах: при выпадении отдельных видов деревьев формируются «окна» со своим специфическим видовым составом.

7. Время (возраст экосистемы). Для того, чтобы в сообществе собрались все виды, которые потенциально могут в нем произрастать, необходимо определенное время. Это универсальный фактор, действующий в любом сообществе, но в разном «биологическом времени».

Все перечисленные факторы формирования видового богатства взаимодействуют, чем и объясняется сложность прогноза видового богатства, о которой писал Р. Уиттекер. Он выделял главные географические широтные и высотные градиенты видового разнообразия, которое нарастает от высоких широт к низким и от высокогорий к равнинам.

В современном мире наблюдается тенденция снижения видового богатства экосистем из-за усиливающегося влияния на них человека. Поэтому существование многих видов находится под угрозой.

Контрольные вопросы

1. Почему сложно получить данные о полном составе биоты разных экосистем?

2. Как можно примерно оценить биологическое разнообразие экосистемы?

3. Какие факторы влияют на биологическое разнообразие растительных сообществ и экосистем?

10.8. Связь биоразнообразия с функциональными параметрами экосистемы

Для проблемы охраны биоразнообразия важен вопрос о его связи с функциональными характеристиками экосистем. Есть мнение, что количество видов в экосистемах «избыточно», так как число функциональных ролей ограничено и всегда больше, чем число их исполнителей. Все растения, к примеру, являются продуцентами-фототрофами, хотя работают по-разному, так как имеют разные экологические ниши (см. 9.2). Однако занимать одну нишу могут несколько видов. Например исчезновение зубчатого каштана в американских широколиственных лесах (см. 8.5) практически не повлияло на функциональные параметры этих экосистем: ниша каштана была занята другими видами широколиственных деревьев, которые вносят такой же вклад в первичную биологическую продукцию, что и каштан. В поймах рек европейской части России исчезнувший вяз заместился другими видами деревьев.

Почти любое растение может быть потреблено различными фитофагами, а диета у большинства фитофагов в свою очередь широкая, т.е. они могут питаться разными видами.

Все это в конечном итоге и породило мнение экологов-технократов (особенно американских корнукопианцев, от cornu-copio – рог изобилия) о том, что число видов избыточно и при потере даже 1/3 биологического разнообразия не произойдет никакой экологической катастрофы.

Нет прямой связи между биоразнообразием экосистем и их продуктивностью (Гиляров, 1996). В разных экосистемах эти отношения различны: существуют маловидовые высокопродуктивные экосистемы (заросли тростника в дельтах южных рек) и многовидовые низкопродуктивные (альварные луга на карбонатных почвах в Швеции и Эстонии).

Нет прямой связи и между биоразнообразием экосистем и их устойчивостью, т.е. способностью поддерживать и восстанавливать экологическое равновесие при влиянии на экосистему нарушающих факторов. Существуют устойчивые экосистемы из небольшого числа видов и неустойчивые – с большим числом видов. Так на островах Тихого океана, подверженных частым ураганам, устойчивость экосистем достигается за счет сравнительно небольшого числа видов. В то же время многие экосистемы влажных тропических лесов с высоким биоразнообразием оказываются неустойчивыми и медленно восстанавливаются даже после небольших нарушений.

Все сказанное о возможно существующей в некоторых экосистемах «избыточности» видов не снимает проблемы охраны биоразнообразия, так как оно обладает «самодостаточной» ценностью (см. 4.6).

Контрольные вопросы

1. Что понимают под «избыточностью» видового богатства экосистемы?

2. Как связаны биологическое разнообразие и биологическая продукция экосистемы?

3. Как связаны биологическое разнообразие и устойчивость экосистемы?

1. Разнообразие взглядов на понимание объема экосистемы.

2. Значение детритофагов в жизни экосистемы.

3. Биологическая «энергетика» экосистем.

4. Факторы, определяющие биологическую продукцию и биомассу экосистем.

5. Почему важно охранять биологическое разнообразие экосистем?

Глава 11. Разнообразие экосистем

Разнообразие экосистем очень велико, и потому рассмотрим несколько примеров, достаточных для того, чтобы проиллюстрировать действие двух основных законов жизни любой экосистемы – круговорота веществ и однократности использования энергии, постоянно поступающей в экосистему извне.

Из числа естественных автотрофных экосистем рассмотрим фототрофные экосистемы лесов и пресноводных водоемов, морей, а также хемотрофные экосистемы «черных курильщиков». Особенности естественных гетеротрофных экосистем мы обсудим на примере глубоководных «темновых» экосистем бентоса океанов и пещер.

Из числа антропогенных экосистем кратко охарактеризуем принципы функционирования сельскохозяйственных и городских экосистем. Более подробное рассмотрение антропогенных экосистем является специальной задачей наук прикладной экологии – агроэкологии и городской экологии.

В заключение главы будет рассмотрена система биомов мира – наиболее крупных единиц классификации экосистем, которые выделяются в масштабе тысяч и десятков тысяч квадратных километров.

11.1. Фототрофные естественные экосистемы: лес и озеро

Схема «работы» фотоавтотрофной экосистемы, использующей в качестве источника энергии солнечный свет, а источника углерода – углекислый газ, общеизвестна. Их функциональные блоки были рассмотрены в разделе 10.2. Сконцентрируем внимание на различиях наземных и пресноводных экосистем, которые несмотря на общую схему работы различаются по многим параметрам: характеру лимитирующих факторов, скорости круговорота веществ, длине пищевых цепей, эффективности передачи энергии в этих цепях и, наконец, по соотношению биологической продукции и биомассы (табл. 10).


Таблица 10 Сравнение основных признаков фототрофных пресноводных и наземных экосистем




Из таблицы очевидно, что есть три главных отличия в функционировании пресноводных и наземных экосистем:

– круговорот углерода в экосистеме водоема протекает быстро – всего за несколько месяцев, в то время как в экосистеме степи он составляет 3–5 лет, а леса – десятки лет;

– биомасса продуцентов в водной экосистеме всегда меньше, чем их биологическая продукция за весь вегетационный период. В наземных экосистемах – наоборот, биомасса больше, чем продукция (в лесу – в 50 раз, на лугу и в степи– в 2–5 раз);

– биомасса планктонных животных больше биомассы растений (водорослей). В наземных экосистемах биомасса растений всегда больше биомассы фитофагов, а биомасса фитофагов – больше биомассы зоофагов.

Кроме того, водные экосистемы более динамичны, чем наземные. Они меняются в течение суток – зоопланктон к ночи собирается ближе к поверхности водоема, а в период, когда вода просвечивается солнцем и прогревается, опускается в глубину. Меняется характер экосистем по сезонам года. Во второй половине лета при высоком содержании элементов питания озера «цветут» – там массово развиваются микроскопические одноклеточные водоросли и цианобактерии. К осени биологическая продукция фитопланктона снижается, а макрофиты опускаются на дно.

Изменяются экосистемы озер от года к году в зависимости от особенностей климата и соответственно количества воды, которая поступает в озеро весной и летом (и от ее качества, т.е. содержания в ней элементов минерального питания, органических веществ, твердых минеральных частиц и др.). В сухие годы озера мелеют, состав рыбного населения обедняется при заморах.

В заключение отметим, что классы наземных и пресноводных экосистем внетренне неоднородны. В экосистемах пустынь накопление детрита ничтожно и биологическая продукция низка в силу дефицита воды и высоких затрат растений на дыхание, а в экосистемах тундр при сравнительно низкой биологической продукции накапливается большое количество детрита, поскольку вследствие дефицита тепла замедляется деятельность редуцентов и детритофагов.

Во многом по-разному функционируют экосистемы олиготрофных и эвтрофных озер. В олиготрофных экосистемах круговорот веществ протекает в основном в фотическом слое, так как планктонные консументы играют одновременно и роль редуцентов: выделяемый ими фосфор тут же усваивается водорослями. Интенсивность «питательного дождя» из фотического слоя в затемненную придонную часть невелика. В эвтрофной экосистеме, напротив, значительная часть фитопланктона не усваивается зоопланктоном, оседает на дно и служит пищей детритофагам бентоса. При этом избыточные элементы питания захораниваются в сапропеле, что и вызывает процесс деэвтрофикации водоема.

Контрольные вопросы

1. Перечислите основные отличия наземных и пресноводных экосистем.

2. Как различаются функциональные параметры экосистем пустынь и тундр?

3. В чем состоит главное отличие функционирования экосистем олиготрофных и эутрофных озер?

11.2. Фототрофные экосистемы океана

Экосистемы океанов занимают более 70% площади Земного шара. За исключением внутренних морей (крупных озер – Каспийского, Азовского) эти экосистемы сообщаются между собой. Средняя глубина океана составляет 3700 м, причем жизнь обнаруживается по всей глубине, безжизненных зон в океане нет. Химический состав морской воды включает 4 основных катиона (натрий, магний, кальций, калий) и 5 анионов (хлорид, сульфат, бикарбонат, карбонат, бромид).

В прибрежной (ее называют неретической) зоне океанов некоторую роль играют элементы минерального питания, поступающие с суши. Однако на подавляющей площади открытого океана экосистемы функционируют только за счет углерода и азота, которые усваиваются из атмосферы. Круговороты веществ в них не привязаны к определенной территории: вещества могут переноситься морскими течениями на очень большие расстояния.

Течения переносят теплые и холодные массы воды и тем самым через ее температуру влияют на условия жизни в океане. Теплую воду несут Гольфстрим и Северо-Атлантическое течение, холодную – Калифорнийские течение (по этой причине на побережье Калифорнии очень часты туманы). Кроме поверхностных ветровых течений, существуют и глубоководные перемещения водных масс. Благодаря течениям в морских экосистемах никогда не бывает недостатка кислорода.

Подъем глубинных холодных вод, насыщенных питательными элементами, к поверхности океана называется апвеллингом. Он происходит в некоторых местах Мирового океана в результате сложного взаимодействия разных течений. Выделяют пять районов апвеллинга: Перуано-Чилийский, Орегон-Калифорнийский, Югозападно-Африканский, Северозападно-Африканский, Аравийский.

В зоне апвеллинга наблюдается, как правило, высокая биологическая продукция, и ей характерны укороченные пищевые цепи, причем в фитопланктоне преобладают диатомовые водоросли, а в нектоне - сельдевые рыбы. В этих районах ведется рыбный промысел.

С Перуано-Чилийским апвеллингом у западного побережья Южной Америки (близ пустыни Атакама со среднегодовым количеством осадков 10-50 мм и крайне бедной растительностью) связано массовое развитие анчоусов, которыми питаются прибрежные морские птицы – бакланы, пеликаны и др. Об интенсивности формирования вторичной биологической продукции в этом районе можно судить по следующим данным: 5 млн птиц ежегодно съедают до 1000 т анчоусов (в отдельные годы численность птиц возрастает до 27 млн особей). Однако столь высокое потребление рыбы птицами не мешает ежегодно вылавливать 10-12 млн т анчоусов, хотя в отдельные годы улов резко падает (до 2 млн т).

Периодическое (раз в несколько лет) повышение температуры поверхностных вод Тихого океана у берегов Эквадора и Перу получило название Эль-Ниньо – Южное колебание (ЭНЮК). Продолжительность ЭНЮК – от 6-8 месяцев до 3-х лет, в среднем – 1-1,5 г. ЭНЮК чаще всего приходится на рождественские праздники (конец декабря), и потому рыбаки западного побережья Южной Америки связывали его с именем Иисуса в младенчестве. Каждое потепление воды резко снижает рыбопродуктивность океана. Между ЭНЮК происходит похолодание воды, названное перуанцами «Ла-Нинья» (в переводе – девочка).

Различают несколько областей – зон океана (рис. 21).


Рис. 21. Схема зонирования морских экосистем.


Литораль – освобождающаяся от воды во время отлива прибрежная зона. В этих условиях произрастают устойчивые к затоплению и засолению цветковые растения – подорожник морской, триостренник, астра морская. Зостера и филлопос-падикс поселяются у нижней границы литорали и могут жить постоянно в воде. Животное население литорали представлено большим числом особей гаммарусов, моллюсков-литорин, мидий.

Континентальный шельф – зона вдоль берегов до глубины 200 (реже 400) м. С этой областью связаны подводные заросли из ламинарий, достигающих 16 м длины. Эти заросли заселены разнообразными ракообразными, моллюсками, нематодами. Ламинариями питаются морские ежи. (На севере Тихого океана морскими ежами питаются каланы.) С этой зоной связан промысел морской рыбы (сельди, трески, камбалы, минтая, хека и др.), ракообразных (крабов, креветок, лангустов) и моллюсков (кальмаров).

Пелагиаль – толща воды остальной части океана. Это самая обширная географическая зона планеты, занимающая около 70% площади Мирового океана, это «пустыня» с биомассой 1-2 г/м.

В зависимости от глубины различаются четыре вертикальных слоя океана:

– фотический – светлая часть океана, где обитают фотосинтезирующие организмы (микроскопические водоросли и цианобактерии, в прибрежном шельфе к ним добавляются бурые и красные водоросли), образующие первичную биологическую продукцию. Толщина этого слоя во многом определяется географической широтой. В районе экватора вертикально падающие солнечные лучи пробивают толщу воды в 250 м, а в Белом море те же лучи, но падающие под острым углом, способны просветить не более 25 м. Влияет на толщину фотического слоя и фитопланктон, который при массовом развитии может снижать прозрачность воды в 10 раз;

– афотический – расположенный глубже обширный «темный» слой океана, где обитают разнообразные гетеротрофы, включая множество рыб;

– абиссаль (бенталь) – придонная область афотического слоя пелагиали («вечной ночи»), где распространены простейшие из отряда фораминифер (до 0,5 млн экз. на 1 м 2) и нематоды – круглые черви очень малого размера (0,5-1 мм длины). Из крупных организмов встречаются морские ежи, голотурии, морские лилии и губки, но не более одного экземпляра на 1 м.

– ультрабиссаль – глубоководные желоба на глубине свыше 8 тыс. м, где на каждый 1 см 2 поверхности давит столб воды весом более 1 т. Однако и в этой части океана есть жизнь – обитают голотурии, морские звезды, двухстворчатые моллюски, разнообразные ракообразные.

Пищевые цепи в океанических экосистемах, как и в пресноводных, обычно состоят из 6 звеньев, последнее звено представлено нектоном – рыбами, млекопитающими и моллюсками. Около 10% биологической продукции в составе «питательного дождя» опускается в темные глубины океана, в том числе лишь 0,03-0,05% захоранивается в осадках, остальное потребляется гетеротрофами. Продукция повышается при волнении моря, способствующем обогащению воды кислородом.

Самую высокую биологическую продукцию имеют коралловые рифы, эстуарии (лиманы, прибрежья в местах впадения рек) и зоны апвеллинга. Умеренно продуктивна зона континентального шельфа.

Контрольные вопросы

1. Расскажите о «горизонтальном» зонировании океана.

2. Какие «вертикальные» зоны различаются в океане?

3. Из скольки звеньев состоят пищевые цепи экосистем фотического слоя океана.

4. Какую роль в жизни океанических экосистем играют течения?

5. Перечислите основные районы апвеллинга.

11.3. Хемоавтотрофные экосистемы рифтовых зон

В рифтовых зонах (местах разломов плит литосферы) подводного хребта Тихого океана из расщелин горной породы выделяются горячие воды, насыщенные сероводородом, сульфидами железа, цинка, меди и других тяжелых металлов. В этих зонах в 70-х гг. ХХ века были открыты хемоавтотрофные экосистемы, получившие название глубоководных геотермальных «оазисов». Температура «гейзеров» достигает 300°C, однако горячие воды не кипят вследствие высокого давления. Содержащиеся в горячей воде соли при контакте с холодной морской водой осаждаются и формируют конусовидные образования высотой до 15 м, которые называются «черными курильщиками». У оснований «черных курильщиков» и формируется «оазис».

Продуцентами этих экосистем являются серобактерии, образующие скопления – бактериальные маты. За счет симбиоза с ними живут и наиболее важные организмы этой экосистемы – вестиментиферы – представители типа погонофор (черви длиной 1–2,2 м, заключенные в длинные белые трубки из хитиноподобного вещества, см. 8.6). В этих экосистемах, кроме того, много видов животных-хищников (крабы, моллюски, некоторые глубоководные рыбы).

Позднее подобные «оазисы» были обнаружены и в других океанах. Биологическая продукция «оазисов» в десятки тысяч раз превышает продукцию типичных бентосных гетеротрофных экосистем (см. 11.2). Биомасса только вестиментифер может достигать 10–15 кг/м.

Однако экосистемы «оазисов» существуют недолго и разрушаются после того, как прекратится деятельность подводных гейзеров.

Кроме «оазисов» существуют еще и геотермальные «поля», которые обнаружены вдоль Центрального Атлантического хребта, простирающегося от Исландии до экватора. Они охватывают непосредственно хребет и окружающие его приподнятые участки дна, ширина «полей» может достигать 75 км. Температура вод, поднимающихся из расщелин – от 50 до 300°C. Жизнь экосистем «полей» в отличие от «оазисов» представлена только бактериями. Состав бактерий и продуктивность этих экосистем пока не изучены, но очевидно, что она много выше, чем у типичных экосистем абиссали.

На сегодняшний день исследовано более 40 «полей», и особенно тщательно – «Потерянный город», расположенный в 15 км от главной гряды Центрального Атлантического хребта (30 о с.ш.) на глубине 700-800 м. Строения «города» из конусовидных образований неправильной формы напоминают сказочные замки высотой 60-80 м.

Контрольные вопросы

1. Какие условия складываются в рифтовых зонах глубоководий океана?

2. Расскажите об экосистемах «черных курильщиков».

3. Что такое геотермальные поля и где они распространены?

11.4. Гетеротрофные и автотрофно-гетеротрофные естественные экосистемы

Гетеротрофные экосистемы существуют за счет поступления органического вещества извне, т.е. зависят от автотрофных экосистем. Такие отношения можно рассматривать как «комменсализм на уровне экосистем»: экосистемы, поставляющие органическое вещество, от этих поставок существенно не страдают, а получающие органическое вещество гетеротрофные экосистемы – выигрывают.

Гетеротрофными являются экосистемы океанических глубоководий, в которых организмы живут за счет скудного «питательного дождя» из остатков организмов планктона и нектона и пеллет – экскрементов ракообразных, упакованных в особые оболочки. Органические вещества, выпадающие из светового слоя океана, постепенно съедаются по мере опускания в глубокие слои, и на глубину 4-5 км, где в кромешной тьме живут некоторые моллюски, ракообразные и даже рыбы, попадают сущие крохи. В итоге биологическая продукция таких экосистем крайне низка, а запас биомассы составляет доли грамма на 1 м.

Еще ниже биологическая продукция и биомасса сообществ клещей на вечных снегах, которые живут за счет органических остатков, задуваемых снизу из заселенных вертикальных поясов гор.

Типично гетеротрофными являются экосистемы темных пещер. Поступление органического вещества в них связано либо с экскрементами летучих мышей, которые в ночное время вылетают из пещер на охоту, либо с органическим веществом, которое заносится в пещеру током вод из освещенных территорий (Бирштейн, 1985). В составе населения таких экосистем могут быть жуки, паукообразные, мокрицы и многоножки. Второй трофический уровень (хищников) в пещерных экосистемах, как правило, не выражен, но обильны бактерии-редуценты.

Существуют переходные от автотрофных к гетеротрофным типы экосистем, их пример – затененные лесные водоемы, где основным источником органического вещества является опад листьев деревьев, но имеется и некоторое количество организмов автотрофного планктона. Ю. Одум (1996) описывает автотрофно-гетеротрофную экосистему мангров в эстуариях, где главной пищевой цепью является детритная, которую открывают многочисленные детритофаги, питающиеся опадающими листьями. Кроме детритофагов в таких экосистемах есть еще не менее двух трофических уровней хищных рыб.

Контрольные вопросы

1. Расскажите о бентических экосистемах глубоководий океана.

2. За счет каких источников вещества и энергии функционируют экосистемы темных пещер?

3. Приведите примеры естественных автотрофных и гетеротрофных экосистем.

11.5. Сельскохозяйственные экосистемы

Сельскохозяйственные экосистемы (агроэкосистемы) занимают около 1/3 территории суши, при этом 10% – это пашня, а остальное – естественные кормовые угодья. Агроэкосистемы относятся к фотоавтотрофным – имеют ту же принципиальную схему функционирования с передачей энергии по цепи «продуценты – консументы – редуценты», что и естественные наземные экосистемы. Их отличие заключается в том, что состав, структура и функция управляются не естественными механизмами самоорганизации, а человеком. Как пишет Ю.Одум (1986), человек стоит на вершине экологической пирамиды и стремится спрямить пищевые цепи Так чтобы получать максимальное количество первичной (растениеводческой) и вторичной (животноводческой) продукции нужного качества (Одум, 1986).

Кроме того, агроэкосистемы значительно более открыты, чем естественные экосистемы: с растениеводческой и животноводческой продукцией из них происходит отток элементов питания. Некоторое количество элементов питания теряется и за счет вымывания в грунтовые и наземные воды, а также эрозии – смывания или сдувания с полей мелкозема, который является наиболее питательной частью почвы.


Рис. 22. Схема управления сельскохозяйственной экосистемой (по Миркину, Хазиахметову, 2000).


Для того, чтобы управлять агроэкосистемой (рис. 22), человек затрачивает антропогенную энергию – на обработку почвы и полив, на производство и внесение удобрений и химических средств защиты растений, на обогрев животноводческих помещений в зимнее время и т.д. Количество затрачиваемой антропогенной энергии зависит от избранной стратегии управления. Сельское хозяйство может быть интенсивным (высокие вложения энергии), экстенсивным (низкие вложения энергии) или компромиссным (умеренные вложения энергии). Компромиссная стратегия наиболее целесообразна, так как позволяет сочетать достаточно высокий выход сельскохозяйственной продукции с сохранением условий среды и экономией энергии.

Однако даже при интенсивной стратегии управления доля антропогенной энергии в энергетическом бюджете экосистемы составляет не более 1%. Основным источником энергии для «работы» агроэкосистемы является Солнце.

Человек управляет практически всеми параметрами агроэкосистемы:

– составом продуцентов (заменяет естественные растительные сообщества на искусственные посевы сельскохозяйственных растений и посадки плодовых деревьев);

– составом консументов (заменяет естественных фитофагов на домашний скот);

– соотношением потоков энергии по главным пищевым цепям «растение – человек» и «растение – скот – человек» (специализирует хозяйство на производстве растениеводческой или животноводческой продукции или на равное соотношение того и другого);

– уровнем первичной биологической продукции (улучшая условия для развития растений за счет обработки почвы, удобрений и полива).

Человек управляет агроэкосистемой через биологических посредников, к которым относятся культурные растения, сельскохозяйственные животные, почвенная биота и все прочие организмы, населяющие агроэкосистему (насекомые-энтомофаги и опылители, птицы, растения сенокосов и пастбищ и др.). Посредники играют роль биологических усилителей, позволяющих уменьшать затраты антропогенной энергии.

Способы управления агроэкосистемой совершенствовались в течение десяти тысяч лет истории сельского хозяйства (появились мощная сельскохозяйственная техника, минеральные удобрения, пестициды, стимуляторы роста и т.д.), однако возможности управления и сегодня по-прежнему ограничиваются целым рядом условий – экологических и биологических:

– агроресурсами – климатом (количеством осадков и продолжительностью теплого периода), характером почв и рельефом. От этих условий зависит состав видов и сортов возделываемых растений и видов и пород сельскохозяйственных животных;

– потенциалом формирования первичной биологической продукции – верхним пределом эффективности фотосинтеза, который в большинстве случаев не превышает 1% поступающей солнечной энергии (в особо продуктивных посевах в теплом климате на удобрении и поливе – до 2%);

– максимально возможной долей хозяйственно ценных фракций в урожае – хлопкового волокна, клубней, корнеплодов, зерна и т.д. (например зерна может быть не больше 40% от всей биологической продукции, хотя у пшеницы сорта «Мексикале», выведенного «отцом» зеленой революции Н. Берлоугом, долю зерна удалось довести до 60%);

– неизбежным рассеиванием энергии при переходе ее с первого трофического уровня на второй (при откорме скота): для получения 1 кг вторичной биологической продукции при откорме бройлеров, свиней и коров необходимо затратить (в пересчете на зерно) 2, 4 и 6 кг корма;

– плодовитостью сельскохозяйственных животных: ограничены верхние пределы яйценоскости кур, числа потомства у коров и свиней и т.д.

Биологические ограничители преодолеть невозможно, хотя влияние ресурсных ограничителей может быть ослаблено при интенсивной стратегии управления (высокие дозы удобрений, полив, создание закрытого грунта, террасирование склонов). Однако как показал опыт зеленой революции 60-х гг. ХХ в., когда на поля пришли сверхурожайные сорта, высокие вложения энергии привели к разрушению агроресурсов – почвы, истощению ресурсов воды и ее загрязнению, снижению биоразнообразия. Таким образом, высокие энергозатраты на управление агроэкосистемой экологически неоправданны. Кроме того, энергия сама по себе дефицитна, так как ограничены ресурсы энергоносителей, а производство и транспортировка энергии сопровождаются загрязнением среды.

По этой причине при экологически ориентированном управлении агроэкосистемой и умеренных затратах антропогенной энергии получение достаточно большого количества сельскохозяйственной продукции высокого качества не снижает устойчивости агроэкосистемы (т.е. обеспечивает сохранение ее агроресурсов).

Чтобы вести сельское хозяйство в соответствии с этими требованиями, человек вынужден ограничивать:

– долю пашни (особенно под выгодными, но разрушающими почву культурами – подсолнечник, кукуруза, рис), сохраняя часть агроэкосистемы под многолетними травяными сообществами кормовых угодий или под лесом (естественным или лесопосадками);

– вмешательство в жизнь почвы при ее обработке (использовать не отвальные плуги, а рыхлители) и дозы минеральных удобрений и химических средств защиты растений;

– поголовье скота.

Кроме того, для экологически ориентированного управления агроэкосистемами он должен:

– возделывать виды и сорта культурных растений и разводить породы сельскохозяйственных животных, которые требуют меньших затрат антропогенной энергии (засухоустойчивые виды, не требующие полива, например сорго; лошадей, которые круглый год содержатся на пастбищах, и т.д.);

– использовать экологичные севообороты с многолетними травами и сидератами (их зеленую массу не убирают, а запахивают в почву как удобрение) для восстановления плодородия почв;

– возделывать поликультуры и сортосмеси, т.е. смеси культурных растений, которые более полно используют агроресурсы и требуют меньших затрат на защиту растений;

– рассредоточивать скот по территории агроэкосистемы (содержать его на небольших фермах), чтобы облегчить внесение навоза на поля.

Агроэкосистемы, которые создаются в соответствии с этими принципами, называются самоподдерживающимися (sustainable). В них обеспечивается предельно возможное сходство с естественными экосистемами.

К сожалению, в настоящее время доля устойчивых агро-экосистем в мире (и особенно в России) мала. Под влиянием сельского хозяйства продолжается разрушение почв, нарушаются гидрологические и гидрохимические характеристики агроландшафтов, снижается биологическое разнообразие.

Контрольные вопросы

1. Какую площадь суши планеты занимают агроэкосистемы?

2. Чем отличаются агроэкосистемы от естественных фотоавтотрофных экосистем?

3. Какова доля антропогенной энергии, затрачиваемой на управление агроэкосистемой, в энергетическом бюджете последней?

4. Перечислите основные параметры агроэкосистемы, которыми управляет человек.

5. Какие биологические посредники использует человек для управления агроэкосистемой?

6. Перечислите ресурсные ограничители при управлении агроэкосистемой.

7. Расскажите о биологических ограничителях при управлении агроэкосистемой.

8. Что такое компромиссная система управления агроэкосистемой, каковы ее экологические и экономические преимущества?

9. Какие параметры характеризуют устойчивую агроэкосистему?

11.6. Городские экосистемы

Городские экосистемы (территории городов и их население) – это гетеротрофные антропогенные экосистемы. Однако в отличие от сельскохозяйственных экосистем в них нет элементов саморегуляции. Отнесение городов к экосистемам достаточно условно, это, скорее, «антиэкосистемы», для которых характерны три особенности:

– зависимость, т.е. необходимость постоянного поступления ресурсов и энергии;

– неравновесность, т.е. невозможность достижения экологического равновесия;

– аккумулирование твердого вещества за счет превышения его ввоза в город над вывозом (примерно 10:1). Это в прошлом приводило к повышению уровня поверхности города (формированию культурного слоя, который в старых городах достигает нескольких метров), а сегодня ведет к увеличению площади полигонов хранения бытовых и промышленных отходов.

Задачи экологически ориентированного управления городскими экосистемами в отличие от управления агроэкосистемами, которое осуществляется с использованием организмов-посредников, – чисто технологические, связанные с совершенствованием технологий производства промышленных предприятий, экологизацией коммунального хозяйства и транспорта.

За счет совершенствования производства и транспортных средств и развития системы общественного городского транспорта (последнее особенно важно, так как автомобили дают от 50 до 90% загрязнения городской атмосферы) улучшается качество городской атмосферы и воды.

Технологически решаются и задачи уменьшения энергопотребления городов за счет рассредоточения установок по получению энергии (из углеродистых энергоносителей, солнечных коллекторов и т.д.), ее более экономного использования в коммунальном хозяйстве (замена ламп накаливания лампами холодного свечения, теплоизоляция стен, использование экономичной бытовой техники и т.д.) и на промышленных предприятиях. Аналогично инженерными являются вопросы расходования воды и соответственно очистки загрязненных стоков, уменьшения количества, хранения и переработки твердых бытовых отходов.

На каждого горожанина работает от 1 до 3 гектаров сельскохозяйственных угодий (в том числе 0,5 га пашни). Соответственно экологической является задача экономного расходования продуктов питания и недопущения их порчи.

Если человек не может сделать городскую среду равновесной, то он должен делать все возможное, чтобы ограничить пагубное влияние городов на окружающие их естественные и сельскохозяйственные экосистемы.

Города должны сохраняться в сложившихся границах и расти в первую очередь вверх, освобождая место для зеленых насаждений, которые являются наиболее эффективным и универсальным средством улучшения городской среды. Зеленые насаждения улучшают микроклимат, уменьшают химическое загрязнение атмосферы, снижают уровень физического загрязнения (в первую очередь шумового) и благотворно влияют на психологическое состояние горожан. По экологическим нормативам на одного горожанина должно приходиться 50 м 2 зеленых насаждений в рамках города и 300 м 2 в пригородных лесах.

Контрольные вопросы

1. Перечислите основные особенности городских экосистем.

3. Что такое экосити?

4. В каком направлении должны экологизироваться современные города?

11.7. Биомы

Биом - это высшая единица классификации экосистем. По Ю. Одуму (1986), это крупная региональная или субконтинентальная биосистема, характеризующаяся каким-либо основным типом растительности или другой особенностью ландшафта. Биомы наземных экосистем формируются под воздействием комплекса условий среды, в первую очередь – климата. По объему «биом» совпадает с географическим понятием «природная зона».

Наиболее важные биомы суши:

- тундры (арктические и альпийские) – безлесные территории, расположенные севернее (или выше) лесного пояса;

- тайга – хвойные леса умеренной зоны;

- листопадные (широколиственные) леса умеренной зоны;

- степи умеренной зоны (имеют две паузы в вегетации – зимой и во второй половине лета во время засухи);

- тропические степи и саванны (вегетируют круглый год, но в период засухи их биологическая продукция резко снижается);

- пустыни – экосистемы в условиях сильного стресса засухи при годовом количестве осадков менее 200 мм;

- полувечнозеленые сезонные тропические леса («зимне-зеленые» леса, сбрасывающие листья летом);

- тропические дождевые леса (вегетируют круглый год и являются самыми продуктивными экосистемами Земли).

Биомы водных экосистем определяются в первую очередь соленостью воды, содержанием в ней элементов питания, кислорода и температурой, скоростью течения.

Так экосистемы пресных вод разделяются на биомы стоячих и проточных вод. Экосистемы стоячих вод более разнообразны, так как в этом случае шире пределы изменения условий, определяющих состав биоты и ее продукцию, – глубины водоема, химического состава воды, степени зарастания водоема. В биомах проточных вод большую роль играет скорость течения и различен состав биоты на перекатах и плесах.

Среди экосистем морских побережий различают биомы приморских скалистых побережий, достаточно бедных элементами питания, и эстуариев (лиманов) – богатых элементами питания илистых отмелей у впадения рек.

Среди пелагических экосистем океана различают биомы фотических (автотрофных) сообществ верхнего слоя вод (поверхностные пелагические сообщества) и морских глубоководных пелагических гетеротрофных сообществ.

Как биомы рассматриваются бентосные сообщества континентального шельфа, коралловые рифы (высокопродуктивные сообщества тропических морей) и хемоавтотрофные сообщества гидротермальных оазисов.

Биологическая продукция и биомасса экосистем разных биомов значительно различается (табл. 11).


Таблица 11 Биологическая продукция и биомасса основных биомов мира (в сухом веществе, Уиттекер, 1980)



Контрольные вопросы

1. Что такое биом?

2. Перечислите основные биомы суши.

3. Какие биомы выделяются в океанах?

4. По какому принципу разделяются биомы континетальных водоемов?

Темы докладов на семинарских занятиях

1. Разнообразие наземных экосистем.

2. Разнообразие пресноводных экосистем.

3. Экосистемы океанов.

4. Особенности сельскохозяйственных экосистем.

5. Экологические проблемы городских экосистем.

Глава 12. Динамика экосистем

Экосистемы постоянно меняются, причем в разном «биологическом времени» и разном «биологическом пространстве». При этом в любой точке экосистемы одновременно происходят под влиянием самых разных причин изменения, накладывающиеся друг на друга. Ситуация напоминает траекторию движения молекулы в колбе лабораторной мешалки, в которой разбалтывается смесь почвы и воды. Молекула совершает броуновское движение, вместе с колбой – колебательное, «встряхивательное» в мешалке, движется вместе с планетой при ее вращении вокруг своей оси и совершает полет вокруг солнца, путешествуя в галактике вместе с солнечной системой, и т.д. Кроме того, в этот сложный тренд изменения положения молекулы могут встраиваться ее движения в связи с подъемами и опусканиями уровня суши, местными колебаниями поверхности почвы вследствие прохождения тяжелой техники и т.д.

По этой причине, чтобы разобраться в общих закономерностях динамики экосистем, необходимо расчленить все компоненты изменений под влиянием разных факторов и рассмотреть их порознь в разном «биологическом пространстве» и в разном «биологическом времени».

Следует сделать одно важное предварительное замечание. Мы уже отмечали, что полностью пересчитать все виды, входящие в состав экосистемы, при реальных затратах времени не удается. Именно поэтому экологи понимают экосистемы как явления в первую очередь функциональные, оценивают их продуктивность, круговороты веществ, закономерности перехода энергии по пищевым цепям и т.д. По этой же причине никто никогда не пытался изучить динамику экосистем с учетом всех входящих в их состав видов. Чаще всего о динамике наземных экосистем судят по изменению состояния ее автотрофного блока – совокупности растительных сообществ (или одного растительного сообщества), априори полагая, что эти изменения индуцируют и перестройку всей гетеротрофной биоты экосистемы в соответствии с принципом «разнообразие порождает разнообразие». Связь гетеротрофной биоты с растениями при этом может быть прямой – они питаются этими растениями и косвенной – состав растительного сообщества отражает состояние условий среды, которые влияют на состав консументов и редуцентов (влажность почвы, содержание в воде кислорода, реакция среды и т.д.).

Динамика экосистем обычно изучается по схеме:

а) выявление динамики растительных сообществ с выделением стадий этой динамики как некой «канвы» для изучения изменения гетеротрофных компонентов экосистемы;

б) изучение динамики гетеротрофной биоты. При этом исследуется динамика либо наиболее важных видов (редких или ресурсных с целью их охраны или рационального использования), либо крупных таксономических групп – птиц, рыб, млекопитающих, отдельных групп насекомых.

Динамика растительных сообществ – это один из наиболее развитых разделов современной науки о растительности (Миркин и др., 2000). Именно поэтому, рассматривая динамику экосистем, мы в значительной мере будем опираться на теоретические разработки этой науки.

12.1. Классификация изменений экосистем

Все изменения можно разделить на два больших класса, впрочем, тоже связанных плавным переходом: циклическая динамика и векторизованные (направленные) изменения.

Циклические изменения – это изменения состава, структуры и функций экосистемы вокруг некоторой средней величины, соответствующей состоянию экологического равновесия. При экологическом равновесии в экосистеме:

– состав видов сохраняется постоянным (хотя часть из них периодически находится в покоящемся состоянии или отсутствует в результате миграции);

– продукция автотрофов полностью перерабатывается гетеротрофами (суммарная продукция биоценоза равна ее суммарному дыханию), хотя часть ее может временно переходить в детрит;

– круговороты веществ замкнуты: сколько какого-то элемента израсходовано организмами, столько и возвращено обратно в окружающую среду.

Если какое-то количество веществ покинуло экосистему (при «фоновой» эрозии почв, внутрипочвенном стоке, за счет денитрификации, испарения и т.д.), то оно компенсируется поступлением веществ в экосистему извне (идет процесс выщелачивания материнских пород, биологическая фиксация азота, выпадают осадки и т.д.).

Направленные (векторизованные) изменения – это изменения состава и функциональных параметров экосистемы. По своей природе они могут быть подразделены на три основных типа.

Нарушения – резкие изменения состава и функции экосистемы под влиянием внешнего фактора – при землетрясении, селевом потоке, пожаре, наводнении, распашке, вырубке леса, разливе нефти и т.д. Разные нарушения охватывают разное биологическое пространство: от нескольких квадратных метров (разлив небольшого количества нефти, вырубание одного или нескольких деревьев) до десятков квадратных километров (крупные пожары).

В зависимости от фактора, вызвавшего нарушение, и особенностей (устойчивости) экосистемы результат может быть разным. Настолько разным, что трудно делать какие-либо обобщения о реакции экосистем на нарушения.

Автогенные сукцессии – постепенные изменения экосистемы под влиянием жизнедеятельности ее биоты, при которых меняются состав видов и функциональные параметры экосистемы в направлении формирования равновесного с климатом устойчивого состояния – климакса. В зависимости от того, возрастают или убывают в ходе сукцессий биологическая продукция, запас биомассы, видовое богатство, они подразделяются на прогрессивные и регрессивные.

Различаются три варианта автогенных сукцессий:

первичные автотрофные . Эти сукцессии начинаются «от нуля», т.е. в условиях, где практически не было жизни, которая в ходе сукцессии осваивает новое пространство;

вторичные автотрофные (восстановительные). Эти сукцессии начинаются после полного или частичного разрушения экосистемы под влиянием нарушений или после прекращения процесса рассматриваемых ниже аллогенных сукцессий. Как правило, вторичные сукцессии протекают быстрее, чем первичные, так как от разрушенной первичной экосистемы остается какой-то запас «остатков жизни» – семян растений и их вегетативных органов в почве, спор мхов и грибов, покоящиеся стадии почвенных животных и т.д.;

Аллогенные сукцессии – изменения экосистем под влиянием внешнего по отношению к ним фактора. Эти сукцессии продолжаются до тех пор, пока действует внешний фактор. Как только его действие прекратится, начнется вторичная восстановительная сукцессия.

Эволюция экосистем. Эти изменения также постепенны, как и сукцессии, но отличаются результатом – возникают новые ансамбли видов, которых в природе еще не было. Такие изменения экосистем могут быть природными и антропогенными. Природная эволюция протекает в геологическом масштабе времени. В настоящее время она почти полностью подавлена антропогенной эволюцией экосистем.

Как и сукцессии, эволюция экосистем может быть не только прогрессивной, сопровождающейся их усложнением (обогащением состава видов), но и регрессивной, при которой происходит обеднение состава биоты экосистемы. Регрессивной, как правило, является антропогенная эволюция экосистем.

Рассмотрим перечисленные варианты динамики экосистем более подробно.

Контрольные вопросы

1. Какие общие черты характерны для циклических изменений экосистем?

2. Перечислите основные формы направленных изменений экосистем.

3. Чем отличаются прогрессивные и регрессивные изменения экосистем?

12.2. Циклические изменения экосистем

Циклические изменения экосистем очень разнообразны, они могут вызываться абиогенными причинами (в первую очередь изменением условий в суточном, годичном и многолетнем (разногодичном)) и биогенными – флюктуациями плотности популяций «ключевых» видов. Циклическая динамика протекает в разных масштабах «биологического времени» и «биологического пространства».

Суточные изменения наиболее наглядны в водных экосистемах, где в период максимальной освещенности зоопланктон рассредоточивается по толще воды, но в вечерние часы, когда освещенность уменьшается, он концентрируется близ поверхности. Суточные изменения связаны с биоритмами (см. 4.4.2): в жизнедеятельности дневных и ночных животных, в закрывании на ночь цветков, в изменении положения листовых пластинок многих видов деревьев. У лотоса орехоносного, которой образует «поля» в Астраханском заповеднике, ночью листья лежат на поверхности воды, как у кувшинки или кубышки, но днем приподнимаются над ней на несколько сантиметров, что резко изменяет условия жизни населения поверхности водоема, которое в дневные часы может жить под зонтом из листа лотоса.

В суточном ритме меняются и функциональные параметры экосистемы – интенсивность фотосинтеза и переработки первичной биологической продукции во вторичную. Лишь в почве, заселенной армадой простейших и беспозвоночных животных, жизнь в ночные часы замедляется незначительно.

Сезонные изменения. Сезонные ритмы организмов общеизвестны. С сезонами года связаны жизненные циклы большинства живых организмов (цветение и плодоношение растений, выведение потомства животными и т.д.). Обитатели экосистемы хорошо адаптированы к смене времен года: растения на зиму сбрасывают листья, теплокровные животные «утепляются», увеличивая прослойку жира и густоту шерстного покрова, впадают в спячку или мигрируют в более благоприятные условия (птицы), меняют «маскировочные халаты» (зайцы становятся белыми) и т.д. В зависимости от сезона года существенно различаются и функциональные параметры экосистемы. В умеренных широтах в зимнее время резко снижаются продукция и дыхание, хотя в тропических лесах сезонность «работы» экосистемы практически отсутствует. В степях жизнь экосистем замедляется дважды – зимой и во второй половине лета в период дефицита влаги.

Сезонная динамика ярко проявляется в водных экосистемах. В первой половине лета вода насыщена элементами минерального питания и бурно (в соответствии с экспоненциальной кривой) размножаются виды фитопланктона. Их обилие к середине лета снижается в результате выедания зоопланктоном. К осени макрофиты опускаются на дно. Эвтрофицированные водоемы во второй половине лета «цветут» (происходит массовое развитие цианобактерий).

Многолетние (разногодичные) изменения. Они еще более разнообразны. Под влиянием климатических особенностей года (динамики температуры, количества осадков, паводков в пойменных экосистемах) изменяется величина первичной и вторичной биологической продукции. Кроме того, часть видов переживает неблагоприятные по климату годы в состоянии покоя (в год засухи в луговых сообществах развивается не более одной трети видов растений, а остальные переходят в состояние покоя – семян, «спящих» подземных органов и т.д.). Не менее значительными могут быть изменения в составе животного населения. Так засухами порождаются миграции саранчи.

Примером многолетних изменений экосистем, вызываемых биотическими причинами, является динамика степных экосистем Монголии под влиянием вспышек численности полевки Брандта – мышевидного грызуна, который является «ключевым» видом. При массовом развитии полевки резко меняется состав растительного сообщества: вместо ковылей, листья которых съедают грызуны, из подземных корневищ развиваются побеги других злаков, особенно востреца (Elymus chinensis). Однако вслед за пиком численности начинается спад плотности популяции грызуна. И через несколько лет популяции ковылей также восстанавливаются, а корневищные злаки переходят в прежнее состояние «полупокоя» и «готовятся» к новой вспышке обилия грызунов. Колебания фаз «Elymus chinensis – Stipa krilovii» – характерная особенность монгольских степей, которую описали выдающиеся исследователи А.А. Юнатов и Е.М. Лавренко.

В европейских широколиственных лесах в некоторые годы массово развивается непарный шелкопряд. Его гусеницы почти полностью поедают листву деревьев, что улучшает условия для жизни растений напочвенного покрова (освещенность, обеспеченность элементами минерального питания за счет экскрементов гусениц). В итоге резко падает биологическая продукция деревьев, но возрастает продукция трав и соответственно связанных с ними фитофагов.

Кабаны постоянно перерывают участки леса в поисках корма. На пороях площадью несколько десятков метров разрастаются рудеральные растения, однако в течение 4-5 лет происходит восстановление напочвенного покрова и как следствие – циклическая динамика всей биоты. Естественно, что «вспашка» кабанами участка леса резко изменяет жизнь всего почвенного ценоза. Активизируется деятельность бактерий-аэробов и животных, предпочитающих условия рыхлых и хорошо аэрированных почв.

Более продолжительны циклы, вызываемые деятельностью бобров: после того, как они запрудят реку, в течение нескольких лет происходит интенсивная перестройка экосистемы и возрастает роль влаголюбивых растений и их спутников. Виды деревьев, неустойчивых к подтоплению и затоплению, вообще погибают. Однако за 10-20 лет использования этой территории бобры выедают растения, служащие им кормовой базой (в первую очередь ольху) и меняют место жительства. Происходит достаточно быстрое разрушение «гидромелиорированной» экосистемы и восстановление прежней. Этот цикл продолжается примерно 100 лет.

В масштабе десятилетий происходят обратимые изменения лесов Дальнего Востока, связанные с биологическими циклами видов бамбука из рода Sasa, являющихся ключевыми в этих экосистемах. Бамбуки, развивающиеся в подлеске, подавляют возобновление деревьев. Но они монокрапики (т.е. плодоносят всего один раз и после этого погибают), и после гибели очередной генерации бамбука в течение нескольких лет до следующего его разрастания активно возобновляются популяции деревьев.

В широколиственных лесах Восточной Европы в результате выпадения отдельных деревьев (от старости или под влиянием ветра) образуются «окна». В «окнах» размером несколько десятков метров формируются сообщества из эксплерентов (рудеральных трав, ольхи, березы), которые спустя несколько десятилетий замещаются «основными» видами этого типа леса. Исследователи тропических лесов назвали эти сменяющие друг друга группы «дриадами» и «номадами». Динамика «дриад» и «номад» соответствует одной из моделей устойчивости экосистем: устойчивость в крупном масштабе биологического пространства слагается из неустойчивостей в его мелком масштабе.

В целом любые циклические изменения экосистем – это отражение их пластичности, т.е. приспособленности состава, структуры и функциq к колебаниям условий среды и жизненным циклам «ключевых» видов.

Контрольные вопросы

1. Перечислите варианты циклических изменений экосистем.

2. Приведите примеры суточных изменений экосистем.

3. Приведите примеры сезонных изменений экосистем.

4. По каким причинам происходят разногодичные изменения экосистем, приведите их примеры.

12.3. Первичные автогенные сукцессии и климакс

Первичные автогенные сукцессии зарастания субстратов, образующихся после таяния ледника на Новой Земле, еще в начале XIX столетия описал русский ученый К. Бэр (Трасс, 1976). Тем не менее концепция первичной автогенной сукцессии, в результате которой экосистема переходит в экологически равновесное состояние, наиболее соответствующее климату, связана с именем выдающегося американского эколога Ф. Клементса. Это равновесное состояние было названо климаксом. Экосистемы стадий сукцессии на пути к климаксу Клементс назвал серийными.

Клементс считал, что в любом географическом районе с одним типом климата есть только один тип экосистемы (моноклимакс), который наиболее соответствует этому климату. К примеру, в Восточной Европе в биоме тайги – это еловый лес, в биоме широколиственных лесов – липово-дубовый лес, в биоме степей – разнотравно-ковыльная степь. Все иные типы экосистем «стремятся» перейти в этот тип, т.е. происходит процесс конвергенции (выравнивания) состава экосистем одного района: на скалах образуются почвы; озера зарастают, превращаясь в болота, которые со временем высыхают; происходит измельчение минеральных частиц (пески превращаются в суглинки); более сухие местообитания становятся более влажными за счет накопления органического вещества, которое способно удерживать дождевые и снеговые воды.

Кроме того, Клементс выделял множество разных типов сообществ (и соответствующих им экосистем), которые в результате действия какого-либо внешнего фактора «застревают» на определенной стадии сукцессии и не могут перейти в климакс, т.е. являются хронически сериальными. Например, субклимакс – это экосистема поймы реки, которая не переходит в климакс вследствие регулярных паводков. Дисклимакс – это экосистема, которая не переходит в климакс в результате действия нарушающего ее фактора (например интенсивно использующееся пастбище).

В ходе сукцессий экосистем, формирующих климакс, возрастают продуктивность и биомасса, видовое богатство, сложность структуры (формируются почвы, появляются растения разных жизненных форм – деревья, кустарники, травы, что формирует дополнительные ниши для гетеротрофов). Повышается роль различных механизмов сосуществования – дифференциации экологических ниш, мутуализма, коадаптации между хищниками и их жертвами и т.д. Условия для жизни растений и видов гетеротрофной биоты в ходе такой сукцессии улучшаются, а сама последовательность видов в ходе сукцессии жестко детерминирована законами «онтогенеза» экосистем.

Экологи, развивавшие функциональный взгляд на экосистему (А. Лотка, Г. Одум, Р. Пинкертон, Р. Маргалеф) подчеркивали, что по мере приближения к климаксу происходит сдвиг потока энергии от продуктивности к дыханию (Лотка говорил даже о «законе максимума биологической энергии»). Ю. Одум (1986) подчеркнул, что в ходе сукцессии по мере ее приближения к климаксу происходит выравнивание соотношения продукции (P) и дыхания (R), т.е. в климаксовой экосистеме Р=R. Вся продукция, которая образована за год, растрачивается на дыхание, и потому дальнейшего увеличения биомассы не происходит. Отношение величины биомассы к продукции (В/Р) возрастает до тех пор, пока на единицу потока энергии не будет приходится максимум биомассы для данного климата (этот максимум будет различаться в зонах тайги, широколиственных лесов, степи, пустыни и т.д.).

По мере приближения к климаксу круговороты биогенных элементов становятся все более замкнутыми и медленными, причем возрастает доля биогенов, которые фиксированы в живых организмах и детрите (включая и гумус почвы).

В ходе сукцессии происходят «эстафеты» представителей флоры, фауны, грибов, микроорганизмов, причем в большинстве случаев виды r-стратегии сменяются видами К-стратегии (по Макартуру и Уилсону) или (по Раменскому и Грайму) виды стратегии R – видами стратегий С, S и различных переходных вторичных типов (CS, CR, RS, CRS). Таким образом, малолетники сменяются многолетниками, а травы – деревьями, что приводит к увеличению биологической продукции за счет более полного использования ресурсов.

Работы Клементса навсегда останутся классикой экологии и краеугольным камнем теории динамики экосистем. Тем не менее сформулированные им представления в ходе дальнейшего развития экологии претерпели существенные изменения:

1. А. Тенсли и А. Найколсон показали, что в одном районе может формироваться не один, а несколько климаксов, т.е. экосистемы, которые формируются при сукцессиях зарастания скал, озер, песков, лессовидных суглинков и т.д., будут различными. Концепция моноклимакса, таким образом, переросла в концепцию поликлимакса. Р. Уиттекер, развивая эти представления, сформулировал концепцию «климакс-континуума». Он считал, что разные экосистемы поликлимакса связаны друг с другом плавными переходами и по этой причине в каждой точке – свой климакс.

2. Климакс – это не обязательно самая продуктивная и богатая видами экосистема. Как правило, наибольшим видовым богатством и продуктивностью отличаются как раз «предклимаксовые» серийные экосистемы.

3. Сукцессия не является жестко детерминированным, «запрограмированным» процессом, подобным онтогенезу организма, а имеет стохастический характер. Закономерности сукцессий можно выявить только при обобщении (усреднении) результатов наблюдений за несколькими конкретными сукцессиями, протекающими в одних и тех же условиях. В конкретных сукцессионных последовательностях приход видов в сукцессию и уход из нее может происходить в разной очередности. Более того, некоторые виды могут участвовать в одной конкретной сукцессии и не участвовать в другой. Мы уже говорили о том, что функциональных «ролей» в любой экосистеме всегда много меньше, чем число их возможных «исполнителей» (см. 10.8).

Контрольные вопросы

1. Расскажите о представлениях Ф. Клементса в вопросе динамики экосистем.

2. Перечислите функциональные параметры климаксовой экосистемы.

3. Виды с какими типами стратегий представлены на разных стадиях автогенной сукцессии?

4. Какие положения концепции Ф. Клементса об экологической сукцессии и климаксе были пересмотрены?

12.4. Модели автогенных сукцессий

Ф. Клементс считал, что все сукцессии развития экосистем в направлении климакса подчиняются одной модели: улучшаются условия для жизни биоты, и потому возрастают биологическая продукция и видовое богатство экосистемы. Современные экологи различают не менее трех моделей сукцессий (Connell, Slayter, 1977):

– модель благоприятствования. Соответствует представлениям о сукцессии Клементса: продуктивность и видовое богатство в ходе сукцессии возрастают вплоть до стадии климакса. Классический пример такой сукцессии – зарастание скал, где последовательно сменяют друг друга стадии цианобактерий и водорослей, накипных лишайников, кустистых лишайников и мхов, трав, кустарников и деревьев;

– модель толерантности. В ходе сукцессии условия ухудшаются, пример – переход низинного болота в верховое, при котором происходит ухудшение условий минерального питания, и потому снижаются продуктивность и видовое богатство. Ухудшаются условия для жизни биоты и в ходе сукцессии на богатых субстратах: первым растениям-поселенцам достается больше ресурсов минерального питания и света, чем вторым и третьим, которые должны обеспечивать себя ресурсами в условиях возрастающей конкуренции;

– модель ингибирования. В ходе сукцессии появляется «ключевой» вид (или гильдия ключевых видов), который блокирует дальнейшие изменения. В результате происходит остановка сукцессии и она не доходит до стадии климакса. Например на лесных гарях в Шотландии кукушкин лен блокирует поселение деревьев, в пустынях Средней Азии поселению кустарников и саксаула препятствует корка, которую образуют цианобактерии, водоросли и некоторые мхи. Восстановление прерии в Северной Америке блокируется разрастанием заносных европейских злаков-однолетников, в первую очередь Bromus tectorum.

В ходе сукцессии может происходить смена модели благоприятствования моделью толерантности: на первых стадиях условия улучшаются, а по мере приближения к климаксу – ухудшаются.

Наглядный пример сукцессии со сменой модели –формирование растительности при освобождении побережья фиорда ото льда на Аляске (Chapin et al., 1994). Выделяется четыре стадии процесса:

– пионерная (до 20 лет). Поверхность субстрата покрывается «черной коркой» из азотфиксирующих цианобактерий, гаметофитов хвоща (Equisetum variegatum), лишайников, печеночников, на фоне которых рассеянно встречаются травы, кустарничек Dryas drummondii, отдельные экземпляры ивы, тополя (Populus trichocarpa), ели (Picea sitchensis) и ольхи (Alnus sinuata);

– стадия Dryas (между 20 и 30 годами). Вся поверхность покрыта ковром кустарника, в котором рассеяны одиночные экземпляры ив, тополей, елей и ольхи;

– стадия ольхи (между 50 и 100 годами);

– стадия ели (после 100 лет).

В ходе сукцессии формируется почва, которая обогащается органическим веществом и азотом, а смена видов растений идет в направлении повышения их высоты и длительности жизни, что соответствует модели благоприятствования. Однако при этом возрастает уровень конкуренции за свет и почвенные ресурсы (особенно на стадии ели), ухудшаются условия для приживания всходов, повышается вероятность гибели семян, что соответствует модели толерантности. смена моделей происходит на четвертой стадии.

Смена модели благоприятствования моделью толерантности характерна и для сукцессий экосистем в теплом климате. Так при зарастании лавовых потоков на первых стадиях условия улучшаются за счет бобовых (особенно из р. Lupinus), которые способствуют обогащению субстрата азотом, а в дальнейшем – ухудшаются, так как обостряется конкуренция.

Несмотря на то, что автогенные сукцессии протекают спонтанно по присущим им внутренним законам, человек, зная эти законы, может влиять на скорость сукцессии. Так для ускорения самозарастания отвалов пустой породы их поверхность покрывается тонким слоем торфа или почвы, в которой содержатся семена растений. Кроме того, процесс зарастания может быть ускорен посевом семян луговых трав или посадкой кустарников и деревьев.

Контрольные вопросы

1. Чем отличаются сукцессии, протекающие в соответствии с моделями благоприятствования и толернатности?

2. Приведите примеры сукцессий, протекающих по модели ингибирования.

3. Приведите примеры сукцессий со сменой моделей.

12.5. Гетеротрофные сукцессии

Движущей силой автотрофных сукцессий является солнечная энергия, усваиваемая растениями-продуцентами и передаваемая по пищевым цепям консументам и редуцентам. Однако подобно тому, как существуют гетеротрофные экосистемы, возможны и гетеротрофные сукцессии (их называют также деградационными). Эти сукцессии происходят при разложении мертвого органического вещества (детрита): трупа животного, «лепешки» экскрементов коровы, упавшего ствола дерева, лесной подстилки и т.д. В гетеротрофных сукцессиях происходит «эстафета» биоты, которая представлена беспозвоночными, грибами и бактериями.

Гетеротрофная сукцессия в опавшей хвое сосны продолжается около 10 лет (Бигон и др., 1989). Поскольку опавшая хвоя постоянно покрывается новыми слоями опада, то изучение лесной подстилки от ее верхней границы до почвы позволяет судить об изменении биоты во времени. Сукцессия происходит постепенно, тем не менее ее можно условно разделить на три стадии:

– первая. Длится около 6 месяцев, в течение которых происходит первый этап разложения хвои. Впрочем, до 50% живых сосновых хвоинок уже поражено грибом Coniosporium, который открывает эту сукцессию. После опадения хвои этот гриб быстро исчезает, и на ней поселяются Fusicoccum и Pullularia. В конце стадии массово развивается Desmazierella;

– вторая. Длится два года. В число участников сукцессии, кроме Desmazierella, включаются Sympodiella и Helicoma, к которым добавляются почвенные клещи;

– третья. Наиболее продолжительная, которая длится 7 лет. Основными деструкторами хвоинок становятся почвенные животные – ногохвостки, клещи и олигохеты-энхитреиды. Хвоя спрессовывается, после чего интенсивность разложения резко снижается и сукцессия вступает в стадию «климакса».

Другой пример – сукцессия состава насекомых-ксилофагов, участвующих в разложении древесины. Различаются пять стадий этой сукцессии (Кашкаров, 1944) со своим населением детритофагов: живой древесины, ослабленной древесины, мертвого целого дерева, частично разложившейся древесины, полностью разложившейся древесины.

Гетеротрофную сукцессию можно продемонстрировать в эксперименте на сенном растворе, где вначале расцветает пышная культура разнообразных бактерий, которые при добавлении прудовой воды сменяются простейшими из родов Hypotricha, Amoeba, Vorticella. После того, как ресурсы исчерпываются, сукцессия останавливается, а участвовавшие в ней организмы переходят в покоящееся состояние.

Контрольные вопросы

1. Какие сукцессии называются гетеротрофными?

2. Приведите пример гетеротрофной сукцессии.

3. Каким экспериментом можно проиллюстрировать гетеротрофную сукцессию?

12.6. Вторичные автогенные (восстановительные) сукцессии

Восстановительные сукцессии по своему характеру мало отличаются от первичных, но, как отмечалось, протекают в экосистемах, которые частично или полностью нарушены внешним воздействием (как правило, деятельностью человека). Они обычно протекают быстрее, чем первичные, на их скорость влияет степень сохранности экосистемы и наличие источников диаспор для ее восстановления.

Классический пример такой сукцессии – восстановление степи или леса на месте заброшенной пашни. Примерно 150 лет назад основными системами земледелия в России были залежно-переложная и подсечно-огневая (соответственно в степной и лесной зонах). Участок земли использовался как пашня 5-10 лет, после чего забрасывался, т. к. почва истощалась и обильно развивались сорняки, представлявшие первую стадию восстановительной сукцессии уже под пологом культурного растения. Контролировать сорняки при отсутствии тракторов и пестицидов человек не умел.

Постепенно на заброшенном поле, через стадии полевых (сегетальных) сорняков, которые доминировали в первый год, и рудеральных видов, разраставшихся в последующие 3-5 лет, формировался степной травостой или вырастал лес. В ходе этой сукцессии восстанавливалось плодородие почвы, а сорные растения вытеснялись более мощными рудеральными, луговыми и лесными видами. Соответственно обогащалась и фауна.

Восстановление растительности на залежах происходило достаточно долго – не менее 25 лет. Человек научился ускорять этот процесс. Дж. Кертис (J. Curtis) в двадцатых годах прошлого столетия значительно быстрее восстанавливал прерии за счет «искусственного семенного дождя» – смеси семян, собранных на сохранившихся участках прерии. Восстановление лугов высевом смеси семян, собранных в естественных луговых сообществах, практикуется сегодня в Англии.

Ставропольский ботаник Д. Дзыбов разработал экономичный способ ускорения восстановительной сукцессии путем рассева сена с целинного степного участка на вспаханную почву. Семена высыпаются в почву, и сукцессия восстановления степи резко ускоряется: к пятому году в такой «агростепи» есть уже до 80% видов растений целинной степи. Для ускорения восстановительных сукцессий экосистем тундры на Аляске, нарушенных при добыче нефти, применяли азотные удобрения.

Восстановительные сукцессии активно протекают не только на залежах, но и в посевах многолетних трав. Это позволяет использовать старовозрастные посевы многолетних трав для повышения биологического разнообразия сельскохозяйственных экосистем.

Само собой разумеется, что в ходе восстановительных сукцессий меняется вся гетеротрофная биота экосистемы. В литературе приводятся данные об изменениях фауны птиц, грызунов, насекомых.

Сукцессия состава населения птиц изучалась в прериях США (Одум, 1986). Количество видов гнездящихся птиц менялось от 15 до 239, причем на разных стадиях сукцессии состав птичьего населения существенно менялся:

– на первой стадии (первые три года), когда доминировали травянистые растения, число видов птиц менялось от 15 до 40 видов, причем доминировали саванный воробей и луговой трупиал;

– на второй стадии – кустарников, которая продолжалась 22 года, орнитофауна возросла до 136 видов, причем наиболее массовыми были: американская славка, овсянка, желтогрудая славка;

– на третьей стадии – соснового леса, которая представляла 35-100 годы сукцессии, орнитофауна была самой богатой и достигала 239 видов. Самыми массовыми были древесница, тонагра, тиранн, верион желтолобый;

– на заключительной стадии – дубово-гикориевого леса, которая формируется через 150-200 лет после забрасывания пашни, разнообразие птичьего население снизилось до 228 видов. К видам соснового леса добавляются американская кукушка, еще два вида древесницы и тиранн зеленый.

Аналогичные данные о динамике фауны при восстановлении леса получила М.Н. Керзина (1956). Так восстановление ельника (Костромская область) сопровождалось изменением фауны грызунов и насекомых. На стадии открытой лесосеки (1-2 года после вырубки) фауна грызунов была представлена видами из рода Microtus, на смену которым при восстановлении леса приходили типичные лесные виды грызунов из рода Clethrionomys, причем на средней стадии сукцессии эти виды сочетались. Сходный характер имела и динамика насекомых (табл. 12). В целом энтомофауна обеднялась за счет резкого уменьшения числа цикад, уменьшалось количество особей других групп, исключая пауков, количество которых увеличивалось.


Таблица 12 Динамика численности основных групп насекомых при восстановлении еловых, елово-пихтовых и сосновых лесов (на 100 взмахов сачком; по М.Н. Керзиной, 1956)



Распространенным вариантом вторичной восстановительной сукцессии является постпастбищная демутация. При снижении пастбищной нагрузки начинается процесс восстановления пострадавших от выпаса высоких трав: овсяницы луговой, ежи сборной и костреца безостого – на лугах и ковылей – в степях. Патиенты-пастбищники (подорожники, одуванчик, лапчатка гусиная, клевер ползучий на лугу; полынь австрийская и типчак в степи) при отсутствии сильного выпаса теряют свои конкурентные преимущества и резко снижают обилие.

К вторичным восстановительным сукцессиям относится изменение водной экосистемы в результате деэвтрофикации после того, как поступление биогенов в экосистему со стоками прекратилось. Такие сукцессии были изучены на озере Вашингтон крупным американским экологом Т. Эдмондсоном (1998). В ходе описанной сукцессии обильно размножившиеся цианобактерии постепенно вытесняются зелеными и диатомовыми водорослями и параллельно возрастает биоразнообразие зоопланктона и нектона (рыб). Избыточные биогены, поглощенные планктонными организмами, после их смерти оседают на дно водоема и захораниваются в сапропеле.

После снижения содержания питательных элементов водная экосистема восстанавливается. Птицы заносят семена водных растений и икру рыб.

Контрольные вопросы

1. Какие сукцессии относятся к вторичным автогенным (восстановительным)?

2. Охарактеризуйте восстановительную сукцессию растительного сообщества на конкретном примере.

3. Приведите примеры изменения гетеротрофной биоты экосистемы в ходе восстановительной сукцессии.

4. Как протекают сукцессии деэвтрофикации водных экосистем?

12.7. Аллогенные сукцессии

Аллогенные сукцессии вызываются факторами, внешними по отношению к экосистемам. Такие сукцессии чаще всего протекают в результате влияния человека, хотя возможны и природные аллогенные изменения. Их пример – изменение состава экосистемы поймы в результате меандрирования реки и углубления ею базиса эрозии русла. В итоге уровень поймы повышается, а длительность заливания и количество наилка уменьшаются. В результате этого в экосистемах пойм умеренной полосы последовательно сменяют друг друга сообщества ивняков, тополевников, вязовых и липово-дубовых лесов и полностью меняется состав травянистых видов. Меняется и состав гетеротрофной биоты, так как растительные сообщества предоставляют им соответствующую кормовую базу. Кроме того, состав растительного сообщества отражает длительность затопления в период паводка, что во многом предопределяет возможность выживания разных видов насекомых, птиц, почвенной фауны и т.д.

Наиболее распространенным примером аллогенной сукцессии является изменение экосистем злаковников (лугов и степей) под влиянием выпаса. При высоких пастбищных нагрузках снижается видовое богатство, биологическая продукция, биомасса и происходят изменения состава растительного сообщества и сопровождающей его фауны: на смену высоким и хорошо поедаемым растениям приходят низкорослые и плохо поедаемые (последние могут быть и высокорослыми, как, например, виды чертополоха – род Carduus). В степных экосистемах различаются стадии пастбищной дигрессии: ковыльная, типчаковая (с Festuca valesiaca или F. pseudovina), полынковая с господством Artemisia austriaca. На заключительных стадиях такой сукцессии происходит рудерализация и массово развиваются однолетники, которые используют для быстрого роста перерывы между циклами стравливания и условия ослабленной конкуренции с многолетниками, которые угнетены выпасом.

Сегодня чрезвычайно распространенным и нежелательным процессом изменения водных экосистем является их эвтрофикация – изменение в результате поступления большого количества элементов минерального питания, в первую очередь фосфора. Основной причиной эвтрофикации является смыв удобрений с полей, а также стоки животноводческих ферм.

В ходе сукцессии первыми гибнут диатомовые водоросли, вслед за ними – зеленые водоросли, которые вытесняются цианобактериями. Некоторые штаммы цианобактерий выделяют в воду токсичные вещества, которые вызывают гибель многих организмов. При опускании на дно они разлагаются редуцентами, что требует большого количества кислорода. В итоге в таком обедненном кислородом водоеме гибнет большинство видов рыб и макрофитов (в первую очередь таких требовательных к чистой воде, как сальвиния, водокрас лягушечий, горец земноводный). В то же время, роголистник, рогоз широколистный и ряски могут выдерживать достаточно высокий уровень загрязнения и сохраняться в такой эвтрофицированной экосистеме. Вокруг эвтрофицированного водоема ощущается дурной запах, в мелководье скапливается бурая пена, содержащая погибший планктон.

Если количество стоков ограничено или они уже прекращены, водная экосистема сама может справиться с загрязнением – произойдет процесс деэвтрофикации, описанный в предыдущем разделе. Успешно противостоять эвтрофикации могут макрофиты, активно усваивающие элементы питания.

Однако самоочистительная способность водных экосистем ограничена, и потому если стоки поступают длительное время и в большом количестве – они гибнут.

От эвтрофицикации следует отличать отравление водных экосистем промышленными и бытовыми стоками, которые содержат токсичные вещества, например тяжелые металлы. Если поступление токсикантов ограничено, то экосистема может справиться и с ними: ядовитые вещества попадут в организмы ее обитателей, а после их смерти будут захоронены на дне. На дне водоемов Куйбышевского, Волгоградского и других водохранилищ накопился многометровый слой токсичных осадков, образующихся в процессе самоочищения.

Однако, если поступит значительное количество токсичных веществ и тем более если они будут поступать регулярно, водная экосистема восстановиться не сможет.

Другим примером аллогенной сукцессии является изменение состава экосистем под влиянием радиации. Они были изучены Р. Уиттекером и Г. Вудвелом (Whittaker, Woodwell, 1972) на радиационном полигоне о. Лонг (США). При повышении дозы радиации (использовался источник гамма-излучения) происходила сукцессия, которая была как бы зеркальным отражением сукцессии зарастания скал, описанной Ф. Клементсом: вначале гибли деревья, потом кустарники, травы, мхи, и при самых высоких дозах радиации сохранялись только почвенные водоросли. В районе Чернобыля после аварии сукцессия прошла первую стадию: в лесах, расположенных вблизи АЭС, усох древостой (однако спустя несколько лет он начал интенсивно восстанавливаться).

Как правило, аллогенные сукцессии сопровождаются снижением продуктивности и биоразнообразия, хотя на первых стадиях сукцессии эти параметры могут возрастать. Травяные сообщества при умеренном выпасе, леса при некотором влиянии отдыхающих или водные экосистемы при легкой эвтрофикации имеют более богатый видовой состав, чем те же сообщества, не испытывающие внешних влияний.

В некоторых случаях при аллогенной сукцессии возрастает продукция, но снижается видовое богатство. Это наблюдается при изменении лугов под влиянием минеральных удобрений: число видов в сообществах уменьшается в 2-2,5 раза. Причина тому – обострение конкуренции при повышении уровня обеспечения ресурсами. Так большой ущерб видовому составу европейских горных лугов на бедных почвах принесли мероприятия по их улучшению путем внесения минеральных удобрений. Подобным образом снижение видового богатства может сопровождаться возрастанием биологической продукции и при эвтрофикации водоемов.

Контрольные вопросы

1. Расскажите об изменениях экосистем под влиянием интенсивного выпаса.

2. Какие изменения происходят в водных экоситемах при эвтрофикации?

3. Как влияют на экосистемы высокие дозы радиации?

12.8. природная эволюция экосистем

Отличие эволюции экосистем от сукцессий заключается в том, что в ходе эволюции появляются новые комбинации видов и вырабатываются новые механизмы их сосуществования. Итогом природной эволюции является разнообразие экосистем, которое было рассмотрено в главе 11. В отличие от организмов экосистемы и их биоты как целостности не эволюционируют. Эволюция экосистем протекает как сеткообразный процесс, который складывается из более или менее независимой эволюции видов, входящих в их состав (Уиттекер, 1980).

Для организмов одного трофического уровня главным механизмом эволюции является диверсификация, т.е. усиление несходства видов – эволюция не «к», а «от», что позволяет видам занимать разные экологические ниши и устойчиво сосуществовать в сообществе. Принцип разделения экологических ниш смягчает конкуренцию и может дополняться уже рассмотренными механизмами взаимного (как в семейных группах животных) или одностороннего благоприятствования (как у растений-нянь и их подопечных).

Коадаптации отношений «растение – фитофаг» и «хищник – жертва» часто имеют диффузный (коллективный) характер: приспосабливаются друг к другу не отдельные виды (вид А– вид Б), а целые гильдии («команды»). Например в саванне приспосабливаются друг к другу «команды» трав и травоядных, древесных растений и веткоядных. Разумеется, приспособление в этом случае означает не взаимопомощь, а снижение интенсивности антагонистических отношений.

Контрольные вопросы

1. Какую роль в эволюции экосистем играет диверсификация видов?

2. Расскажите о роли унификации видов для их сосуществования.

3. Что такое диффузная коадаптация?

12.9. антропогенная эволюция экосистем

Природная эволюция экосистем протекает в масштабе тысячелетий, в настоящее время она подавлена антропогенной эволюцией, связанной с деятельностью человека. Биологическое время антропогенной эволюции имеет масштаб десятилетий и столетий.

Антропогенная эволюция экосистем разделяется на два больших класса (по типу процессов): целенаправленная и стихийная. В первом случае человек формирует новые типы искусственных экосистем. Результатом этой эволюции являются все агроэкосистемы, садово-парковые ансамбли, морские огороды бурых водорослей, фермы устриц и т.д. Однако к «плановой» эволюции всегда добавляются «неплановые» процессы – происходит внедрение спонтанных видов, например сорных видов растений и насекомых-фитофагов в агроценозы. Человек стремится подавить эти «неплановые» процессы, но это оказывается практически невозможным.

Стихийная антропогенная эволюция экосистем играет большую роль, чем целенаправленная. Она более разнообразна и, как правило, имеет регрессивный характер: ведет к снижению биологического разнообразия, а иногда и продуктивности.

Основу стихийной антропогенной эволюции составляет появление в экосистемах видов, непреднамеренно (реже преднамеренно) занесенных человеком из других районов. Масштаб этого процесса столь велик, что принял характер «великого переселения» и «гомогенизации» биосферы под влиянием человека (Lodge, 1993). Заносные виды называются адвентивными (Kornas, 1978, 1990), а процесс внедрения (инвазии) адвентивных видов в экосистемы – адвентивизацией.

Причиной расселения адвентивных видов является антропогенное нарушение процессов саморегуляции экосистем при отсутствии видов-антагонистов (Элтон, 1960), как у североамериканской опунции в Австралии и амазонского водяного гиацинта в Африке и Азии, или, напротив, при появлении вида-патогена, к которому у местного вида, ставшего его хозяином, нет иммунитета, как в историях с гибелью Castanea dentata и нарушением африканских саванн вирусом коровьей чумы (см. 8.5).

«Экологические взрывы» вызывает занос видов, которые оказываются ключевыми. Чаще такие «взрывы» вовсе не происходят, так как адвентивный вид вообще не вытесняет аборигенные виды из сообщества или если вытесняет, то берет на себя выполнение функциональной роли вытесненного вида.

В процессе антропогенной эволюции могут усиливаться и некоторые виды местной флоры и фауны, которые оказались преадаптированными к режиму возрастающих антропогенных нагрузок. В прошлом они были связаны с местами локальных естественных нарушений – горных селей, пороев, вытаптываемых участков экосистем у водопоев, лежбищ крупных фитофагов, таких как зубры или бизоны, и т.д.

Результатом антропогенной эволюции экосистем, кроме того, является:

– уничтожение видов или снижение их генетического разнообразия (число страниц в Красных книгах во всех странах год от года увеличивается);

– смещение границ природных зон – развитие процесса опустынивания в степной зоне, вытеснение травяной растительностью лесов у южной границы их распространения;

– возникновение новых экосистем, устойчивых к влиянию человека (например экосистем сбитых пастбищ с обедненным видовым богатством);

– формирование новых сообществ на антропогенных субстратах при их естественном зарастании или рекультивации.

Однако основу антропогенной эволюции сегодня, безусловно, составляет процесс расселения заносных видов, называемый адвентивизацией. Вопрос этот столь актуален, что специально рассматривается в следующем разделе.

Контрольные вопросы

1. Чем отличаются целенаправленная и стихийная разновидности антропогенной эволюции экосистем?

2. Приведите примеры «экологических взрывов» при антропогенной эволюции экоситем.

3. К каким результатам приводит антропогенная эволюция экосистем?

12.10. Масштабы процесса адвентивизации биосферы

В числе адвентивных видов имеются представители практически всех групп органического мира, хотя наиболее изучены адвентивные виды растений.

Растения расселялись человеком при любых миграциях (кочевья, военные походы, торговые маршруты и т.д.). Однако особенно активным переселение растений с материка на материк стало после открытия Америки Колумбом. При этом поток растений из Старого света в Новый свет оказался более мощным, чем в обратном направлении. Имеют место феномены «африканизации» американских саванн (White, 1977) и «европеизации» средиземноморских сообществ Калифорнии (Noe, Zedler, 2001). Первый эпизод был связан с усилением потока диаспор из Африки с сеном, на котором в трюмах спали черные рабы, и одновременным разрушением травяного яруса саванн под воздействием крупного рогатого скота. В этих условиях получили распространение африканские злаки Hypperhenia ruta, Panicum maximum, Brachiaria mutica. В Калифорнии большая часть видов из естественных однолетних злаковников вытеснена европейскими Bromus mollis и Lolium multiflorum.

На сегодняшний день картина адвентивизации флор разных материков выглядит следующим образом (Lonsdale, 1999): Северная Америка – 19%, Австралия – 17%, Южная Америка – 13%, Европа – 9%, Африка – 7%, Азия – 7%. Максимальная доля З.в. выявлена в сельскохозяйственных и городских экосистемах – 31%, далее следуют леса умеренной полосы, во флоре которых доля З.в. достигает 22%. В биоме средиземноморских склерофитных кустарников также много З.в. – 17%. Этот показатель резко снижается у альпийской растительности (11%), в саваннах (8%) и пустынях (6%). Адвентивные виды есть в составе флоры любого резервата, кроме Антарктиды (где вообще нет растений).

К числу адвентивных относится большинство видов сорных растений, которые перевозились из района в район с культурными растениями, а также многие рудеральные растения, распространявшиеся при нарушении человеком естественных экосистем. На юго-востоке европейской части России быстро расселяются агрессивные рудеральные виды из родов амброзия и циклахена, которые образуют чистые заросли.

Особенно легко расселяются водные адвентивные виды. В последние годы во многих водоемах тропического и субтропического поясов массово расселились водный гиацинт и сальвиния назойливая. Они наносят значительный экономический ущерб, в особенности в странах Африки, Юго-Восточной Азии и в Австралии. В оросительных каналах Европы большой вред наносит элодея канадская, а в водоемах Канады – разросшаяся там европейская уруть колосистая. В оросительных системах США много хлопот доставляет африканское растение аллигаторова трава. В Австралии рисовые поля зарастают занесенным из Азии куриным просом.

Экосистеме Средиземного моря наносит ущерб тропическая водоросль каулерпа, выделяющая в воду сильнодействующие токсины (по-видимому, каулерпа занесена с балластными водами, хотя возможно, что виновниками ее расселения были аквариумисты).

Картина распространения адвентивных видов животных менее полная. Среди них есть немало опасных видов, способных из-за отсутствия естественных врагов, контролирующих их численность, нанести значительный ущерб экосистемам. Общеизвестны последствия натурализации кролика в Австралии.

В последние годы экосистемы Черного, Азовского и Каспийского морей страдают от видов гребневика – беспозвоночного животного, занесенного с балластными водами судов. Гребневик поедает икру и молодь рыбы.

Экосистемы североамериканских Великих озер изменяются под влиянием европейского окуня, отличающегося прожорливостью и уничтожающего молодь местных видов рыб. Большой ущерб этим экосистемам (а также судам и промышленным предприятиям) наносят экзотические виды моллюсков (в частности дрейссена, которая занесена из Европы). Бурно размножаясь, они забивают водопроводные трубы и облепляют днища судов.

В озере Иссыккуль недавно появился занесенный с Дальнего Востока малоценный агрессивный вид рыбы элеотрис, а по рекам и озерам Подмосковья уже давно расселился дальневосточный ротан, поедающий молодь рыбы. В последние годы он расселяется в верхней Волге (уже зарегистрирован у г. Саратова).

В целом процесс адвентивизации экосистем особенно активизировался после 1950 г. благодаря быстрому развитию транспортных средств, а после 1970 г. вследствие развития процессов глобализации рынка и экономики. После 2030 г. прогнозируется усиление адвентивизации вследствие потепления климата (di Castri, 1990). Однако потепление климата может неодинаково сказаться на разных биомах. Экосистемы тундр, к примеру, обладают высокой буферностью, и потому при потеплении климата их инвазивный потенциал может сохраниться прежним за счет того, что изменится соотношение между видами в сообществах: роль сосудистых растений увеличится, а споровых – уменьшится.

Анализ последствий антропогенной эволюции показывает, что человек должен быть осмотрительным при плановой интродукции вида из одного района в другой и более осторожным в случаях, когда может произойти непреднамеренный занос видов, и принимать меры к уже распространившимся заносным видам, если они пагубно влияют на естественные экосистемы.

Контрольные вопросы

1. Какое историческое событие рассматривается как начало интенсивной адвентивизации флоры и фауны?

2. Расскажите об африканизации американских саванн и европеизации злаковников Калифорнии.

3. Дайте общую картину современного уровня адвентивизации флоры в глобальном масштабе.

4. Приведите примеры пагубного влияния на экосистемы адвентивных видов животных.

5. Какие факторы будут способствовать процессу антропогенной гомогенизации биосферы в будущем?

Темы докладов на семинарских занятиях

1. Значение циклической динамики экосистем для поддержания их устойчивости.

2. Развитие взглядов Ф. Клементса на природу экологической сукцессии.

3. Возможности использования потенциала восстановительных сукцессий для сохранения экосистем.

4. Аллогенные сукцессии как фактор разрушения биосферы.

5. Природная и антропогенная ветви эволюции экосистем: сравнение и оценка вклада в изменение биосферы.

Глава 13. Биосфера

При рассмотрении экосистем мы говорили о потоках энергии и вещества. Для характеристики процесса трансформации энергии мы приводили «закон Линдемана» (правило 10%) и обсуждали отклонения от этого закона, а закономерности циклической циркуляции веществ пока не обсуждали. Это было сделано сознательно: при пространственной неопределенности (безранговости) экосистем говорить о круговоротах веществ в пределах одной экосистемы невозможно. По этой причине мы рассматриваем круговороты веществ только в самой большой экосистеме – биосфере.

Истоки представлений о биосфере уходят в работы А. Лавуазье, Ж.Б. Ламарка и А. Гумбольдта (см. 1.1), однако термин «биосфера» предложил австрийский ученый Э. Зюсс в 1875 г. Этим термином он обзначил одну из оболочек Земли – пространство, в котором есть жизнь. Целостное учение о биосфере создал русский ученый В.И. Вернадский (1926), обосновавший геологическую преобразующую роль живых организмов. Они являются основной геологической силой, которая создала биосферу и поддерживает ее состояние в настоящее время. К понятию «биосфера» близко понятие “гея” (от греч. Гея – богиня Земли), которое в 70-х гг. нашего столетия предложил английский ученый Дж. Ловелок.

13.1. Биосфера как оболочка Земли

Кроме биосферы Зюсс выделил еще три оболочки – атмосферу, гидросферу и литосферу.

Атмосфера – самая наружная газообразная оболочка Земли, она простирается до высоты 100 км. Основные составляющие атмосферы – азот (78%), кислород (20,95%), аргон (0,93%), диоксид углерода (0,03%). Атмосфера является отчасти продуктом жизнедеятельности организмов, так как кислород атмосферы – это результат деятельности фотосинтезирующих организмов – цианобактерий и растений. На высоте 20-45 км расположен озоновый слой, содержание озона в нем примерно в 10 раз выше, чем в атмосфере у поверхности Земли. Этот слой защищает поверхность планеты от избытка ультрафиолетовых лучей, неблагоприятно влияющих на живые организмы.

Между атмосферой и земной поверхностью происходит постоянный обмен теплом, влагой и химическими элементами.

На состояние атмосферы влияет хозяйственная деятельность человека, благодаря которой в ней появились метан, оксиды азота и другие газы, вызывающие атмосферные процессы – парниковый эффект, разрушение озонового слоя, кислые дожди, смог.

Гидросфера оказывается не сплошной оболочкой: моря и океаны покрывают Землю только на 2/3, остальное занято сушей. На суше гидросфера представлена фрагментарно – озерами, реками, грунтовыми водами (табл. 13).


Таблица 13 Распределение водных масс в гидросфере Земли (по Львовичу, 1986)



Гидросфера на 94% представлена солеными водами океанов и морей, а вклад рек в водный бюджет планеты в 10 раз меньше, чем количество водных паров в атмосфере. Три четверти пресной воды недоступны организмам, так как законсервированы в ледниках гор и полярных шапках Арктики и Антарктиды.

Гидросфера испытывает все возрастающее влияние хозяйственной деятельности человека, которая ведет к нарушению рассматриваемого ниже биосферного круговорота воды (ускорение процесса таяния ледников, уменьшение количества жидкой пресной воды и увеличение парообразной воды в результате испарений мелиорированных агроэкосистем.

Литосфера – это верхняя твердая оболочка Земли, мощность которой составляет 50-200 км. Верхний слой литосферы называется земной корой. Вещества, слагающие литосферу, частично образованы за счет деятельности организмов, и это не только торф, каменный уголь, горючие сланцы, но и куда более распространенный карбонат кальция, образовавшийся из моллюсков и других морских животных. Совершенно особую среду представляет собой почва (см. 2.6), находящаяся на границе литосферы и атмосферы.

В настоящее время на литосферу оказывает сильнейшее техногенное влияние человек, особенно за счет развития процессов эрозии, увеличения твердого стока, сжигания ископаемого топлива и создания инженерных сооружений. Искусственные (техногенные) грунты уже покрывают более 55% площади суши Земли, а в ряде урбанизированных районов (Европа, Япония, Гонконг и др.) они покрывают 95-100% территории и их мощность достигает нескольких десятков метров. Суммарная площадь, покрытая всеми видами инженерных сооружений (здания, дороги, водохранилища, каналы и т.п.) в 2000 г. достигла 1/6 площади суши.

Биосфера охватывает всю гидросферу, часть атмосферы и часть литосферы. Ее верхняя граница расположена на высоте 6 км над уровнем моря, нижняя – на глубине 15 км в толще земной коры (на такой глубине обитают бактерии в нефтяных водах) и 11 км в океане. По сравнению с диаметром Земли (13000 км) биосфера – это тонкая пленка на ее поверхности. Однако основная жизнь в биосфере сконцентрирована в значительно более узких пределах, охватывающих всего несколько десятков метров на континентах, в атмосфере и в океане (табл. 14).


Таблица 14 Структура биомассы биосферы (сухое вещество)



В биосфере происходит круговорот всех веществ, т.е. их многократное участие в процессах синтеза и разрушения органического вещества. В круговоротах в той или иной степени участвуют практически все химические элементы, однако наиболее важными для биосферы являются круговороты воды, кислорода, углерода, азота, фосфора.

Контрольные вопросы

1. С именами каких ученых связано рождение и развитие представления о биосфере?

2. Назовите оболочки Земли, которые выделил Э. Зюсс.

3. Расскажите о составе атмосферы.

4. Какова структура гидросферы?

5. Охарактеризуйте масштаб техногенных нарушений литосферы человеком.

6. Назовите верхнюю и нижнюю границы биосферы.

13.2. Основные круговороты веществ в биосфере

Важнейшей характеристикой биосферы являются протекающие в ней круговороты веществ, которые обусловлены биогенными и абиогенными причинами. В настоящее время они нарушаются хозяйственной деятельностью человека, что ведет к нарушению биосферы и может иметь тяжелые последствия для будущих поколений землян. Рассмотрим круговороты наиболее важных биогенов – углерода, кислорода, азота, воды.

13.2.1. Круговорот углерода

Это один из самых важных биосферных круговоротов, поскольку углерод составляет основу органических веществ. В круговороте особенно велика роль диоксида углерода (рис. 23).



Рис. 23. Круговорот углерода в биосфере.


Запасы «живого» углерода в составе организмов суши и океана составляют, по разным данным, 550-750 Гт (1 Гт равна 1 млрд т), причем 99,5% этого количества сосредоточено на суше, остальное – в океане. Кроме того, в океане содержится до 700 Гт в составе растворенного органического вещества.

Запасы неорганического углерода значительно больше. Над каждым квадратным метром суши и океана находится 1 кг углерода атмосферы, и под каждым квадратным метром океана при глубине 4 км – 100 кг углерода в форме карбонатов и бикарбонатов. Еще больше запасы углерода в осадочных породах – в известняках содержатся карбонаты, в сланцах – керогены и т.д.

Примерно 1/3 «живого» углерода (около 200 Гт) циркулирует, т.е. ежегодно усваивается организмами в процессе фотосинтеза и возвращается обратно в атмосферу, причем вклад океана и суши в этот процесс примерно сходный. Несмотря на то, что биомасса океана много меньше биомассы суши, его биологическая продукция создается множеством поколений краткоживущих водорослей (соотношение биомассы и биологической продукции в океане примерно такое же, как в пресноводной экосистеме, см. 11.1).

До 50% (по некоторым данным – до 90%) углерода в форме диоксида возвращают в атмосферу микроорганизмы-редуценты почвы. В этот процесс равный вклад вносят бактерии и грибы. Возврат диоксида углерода при дыхании всех прочих организмов, таким образом, меньше, чем при деятельности редуцентов.

Некоторые бактерии, кроме диоксида углерода, образуют метан. Выделение метана из почвы возрастает при переувлажнении, когда создаются анаэробные условия, благоприятные для деятельности метанообразующих бактерий. По этой причине резко увеличивается выделение метана лесной почвой, если древостой вырублен и вследствие уменьшения транспирации происходит ее заболачивание. Много метана выделяют рисовые поля и домашний скот.

В настоящее время отмечается нарушение круговорота углерода в связи со сжиганием значительного количества ископаемых углеродистых энергоносителей, а также при дегумификации пахотных почв и осушении болот. В целом содержание диоксида углерода в атмосфере ежегодно возрастает на 0,6%. Еще быстрее возрастает содержание метана – на 1-2%. Эти газы являются главными виновниками усиления парникового эффекта, который на 50% зависит от диоксида углерода и на 33% – от метана.

Последствия усиления парникового эффекта для биосферы неясны, наиболее вероятный проноз – потепление климата. Однако поскольку «машинами» климата являются морские течения, то вследствие их изменения при таянии ледников в ряде районов возможно существенное похолодание (в том числе в Европе в результате изменения течения Гольфстрим). Под влиянием изменения концентрации диоксида углерода значительно учащаются крупные стихийные бедствия (наводнения, засухи и т.д.)

Приведенные данные характеризуют биогенный круговорот углерода. В круговороте участвуют и геохимические процессы, при которых происходит обмен атмосферного углерода и углерода, содержащегося в горных породах. Однако данных о скорости этих процессов нет. Полагают лишь, что их интенсивность менялась в истории планеты и парниковый эффект, который наблюдается сегодня, многократно проявлялся в прошлом при усилении геохимических процессов с выделением диоксида углерода и при ослаблении процессов, которые “оттягивали” его из атмосферы.

Для того, чтобы вернуть круговороту углерода равновесие, необходимо увеличить площадь лесов и сократить выброс газов при сжигании углеродистых энергоносителей.

Контрольные вопросы

1. Каково соотношение количества «живого» углерода на суше и в океане?

2. Каково соотношение количества «мертвого» углерода в атмосфере и в океане?

3. Какая доля «живого» углерода ежегодно вовлекается в круговорот?

4. Какая доля углерода возвращается в атмосферу редуцентами наземных экосистем?

5. Перечислите факторы, нарушающие круговорот углерода.

6. Какие последствия может иметь усиление парникового эффекта?

13.2.2. Круговорот воды

Вода испаряется не только с поверхности водоемов и почв, но и живых организмов, ткани которых на 70 % состоят из воды (рис. 24). Большое количество воды (около 1/3 всей воды осадков) испаряется растениями, особенно деревьями: на созидание 1 кг органического вещества в разных районах они расходуют от 200 до 700 л воды.



Рис. 24. Круговорот воды в биосфере.


Различные фракции воды гидросферы участвуют в круговороте по-разному и с разной скоростью. Так полное обновление воды в составе ледников происходит за 8 тыс. лет, подземных вод – за 5 тыс. лет, океана – за 3 тыс. лет, почвы – за 1 год. Пары атмосферы и речные воды полностью обновляются за 10-12 суток.

До развития цивилизации круговорот воды был равновесным, однако в последние десятилетия вмешательство человека нарушает этот цикл. В частности уменьшается испарение воды лесами ввиду сокращения их площади и, напротив, увеличивается испарение с поверхности почвы при орошении сельскохозяйственных культур. Испарение воды с поверхности океана уменьшается вследствие появления на ее значительной части пленки нефти. Влияет на круговорот воды потепление климата, вызываемое парниковым эффектом. При усилении этих тенденций могут произойти существенные изменения круговорота, опасные для биосферы.

Важную роль в годовом водном балансе биосферы играет океан (табл. 15). Испарение с его поверхности примерно в два раза больше, чем с поверхности суши.

Таблица 15 Годовой водный баланс Земли (по Львовичу, 1986)



Контрольные вопросы

1. Какой вклад в испарение воды вносит океан?

2. Какой вклад в испарение воды вносят растения?

3. С какой скоростью осуществляется круговорот разных фракций воды?

4. Расскажите о причинах нарушения круговорота воды.

13.2.3. Круговорот азота

Циркуляция азота в биосфере протекает по следующей схеме (рис. 25):

– перевод инертного азота атмосферы в доступные для растений формы (биологическая азотфиксация, образование аммиака при грозовых разрядах, производство азотных удобрений на заводах),

– усвоение азота растениями,

– переход части азота из растений в ткани животных,

– накопление азота в детрите,

– разложение детрита микроорганизмами-редуцентами вплоть до восстановления молекулярного азота, который возвращается в атмосферу



Рис. 25. Круговорот азота в биосфере.


В морских экосистемах азотфиксаторами являются цианобактерии, связывающие азот в аммиак, который усваивается фитопланктоном.

В настоящее время вследствие уменьшения доли естественных экосистем, биологическая азотфиксация стала меньше промышленной фиксации азота (соответственно 90-130 и 140 миллионов тонн в год), причем к 2020 г. ожидается увеличение промышленной азотфиксации на 60%. До половины азота, вносимого на поля, вымывается в грунтовые воды, озера, реки и вызывает эвтрофикацию водоемов.

Значительное количество азота в форме оксидов азота поступает в атмосферу, а затем в почву и водоемы в результате ее загрязнения промышленностью и транспортом (кислотные дожди). Этот азот был изъят из атмосферы экосистемами геологического прошлого и длительное время находился «на депоненте» в угле, газе, нефти, при сжигании которых он возвращается в круговорот. Например в США с атмосферными осадками выпадает 20-50 кг/га в год азота, а в отдельных районах эмиссия достигает 115 кг/га.

Экологически безопасной считается величина эмиссии азота 10-30 кг/га в год. При более высоких нагрузках происходят значительные изменения в экосистемах: почвы подкисляются, происходит выщелачивание питательных элементов в глубокие горизонты, возможно усыхание древостоев и массовое развитие заносных видов-нитрофилов. Кроме того, высокое содержание азота в растениях, выросших на загрязненных азотом почвах, повышает их поедаемость, что может привести к выпадению из растительных сообществ даже доминантных видов. Так в некоторых пустошах Западной Европы после того, как в вереске повысилось содержание азота, массово размножился вересковый жук (его количество достигало 2000 экземпляров на 1 м 2). Жук практически полностью выел этот кустарник из сообществ. Те же изменения в составе загрязняемых промышленным азотом сообществ отмечены и в Калифорнии.

Однако не всегда кислотные дожди оказывают пагубное влияние на экосистемы. Экосистемы степной зоны, где почвы имеют слабощелочную реакцию, от выпадения кислотных дождей не только не страдают, но даже увеличивают свою продуктивность за счет дополнительного азота.

Восстановление естественного круговорота азота возможно за счет уменьшения производства азотных удобрений, резкого сокращения промышленных выбросов оксидов азота в атмосферу и расширения площади посевов бобовых, которые симбиотически связаны с бактериями-азотфиксаторами.

Контрольные вопросы

1. Перечислите основные этапы круговорота азота.

2. Через какие каналы атмосферный азот попадает в экосистемы?

3. Какой вклад в круговорот вносит техногенный азот?

4. Расскажите о вкладе в круговорот азота сжигания азотсодержащих энергоносителей.

5. Что нужно сделать для нормализации круговорота азота?

13.2.4. Круговорот кислорода

Кислород атмосферы имеет биогенное происхождение и его циркуляция в биосфере осуществляется путем пополнения запасов в атмосфере в результате фотосинтеза растений и поглощения при дыхании организмов и сжигании топлива в хозяйстве человека (рис. 26). Кроме того, некоторое количество кислорода образуется в верхних слоях атмосферы при диссоциации воды и разрушении озона под действием ультрафиолетового излучения, и часть кислорода расходуется на окислительные процессы в земной коре, при вулканических извержениях и др.



Рис. 26. Круговорот кислорода в биосфере.


Этот круговорот очень сложный, так как кислород вступает в разнообразные реакции и входит в состав очень большого числа органических и неорганических соединений, и замедленный. Для полного обновления всего кислорода атмосферы требуется около 2 тысяч лет (для сравнения: ежегодно обновляется около 1/3 диоксида углерода атмосферы).

В настоящее время поддерживается равновесный круговорот кислорода, хотя в крупных густонаселенных городах с большим количеством транспорта и промышленных предприятий возникают локальные нарушения.

Однако отмечено ухудшение состояния озонового слоя и образование «озоновых дыр» (областей с пониженным содержанием озона) над полюсами Земли, что представляет экологическую опасность. Временные «дыры» возникают также над обширными районами вне полюсов (в том числе и над континентальными районами России). Причиной этих явлений является попадание в озоновый слой хлора и оксидов азота, которые образуются в почве из минеральных удобрений при их разрушении микроорганизмами, а также содержатся в выхлопных газах автомобилей. Эти вещества разрушают озон с более высокой скоростью, чем он может образовываться из кислорода под влиянием ультрафиолетовых лучей.

Сохранение озонового слоя – одна из глобальных задач мирового сообщества. Для прекращения разрушения озонового слоя и его восстановления необходимо отказаться от использования хлорсодержащих веществ – хлорфторуглеродов (фреонов), используемых в аэрозольных упаковках и холодильных установках. Необходимо также уменьшение количества выхлопных газов двигателей внутреннего сгорания и доз азотных минеральных удобрений в сельском хозяйстве.

Содержание озона может увеличиваться в приземном слое атмосферы, так как озон является фотооксидантом, образующимся из оксида азота и углеводородов под влиянием ультрафиолетовых лучей. В этом случае он оказывается опасным загрязнителем, вызывающим раздражение дыхательных путей человека. Однако отрицательно сказывается на здоровье человека и чрезмерно низкое содержание озона в атмосфере.

Контрольные вопросы

1. Назовите основной источник пополнения запаса кислорода в атмосфере.

2. Укажитие, при каких процессах происходит поглощение кислорода из атмосферы.

3. За какое время происходит обновление запаса кислорода в атмосфере?

4. Охарактеризуйте проблему сохранения озонового слоя атмосферы.

13.2.5. Круговорот фосфора

О круговороте фосфора за обозримое время можно говорить лишь условно. Будучи гораздо тяжелее углерода, кислорода и азота, фосфор почти не образует летучих соединений – он стекает с суши в океан, а возвращается в основном при подъеме суши в ходе геологических преобразований. По этой причине круговорот фосфора называют «открытым» (рис. 27).



Рис. 27. Круговорот фосфора в биосфере.


Фосфор содержится в горных породах, откуда выщелачивается в почву и усваивается растениями, а затем по пищевым цепям переходит к животным. После разложения мертвых тел растений и животных не весь фосфор вовлекается в круговорот, часть его вымывается из почвы в водоемы (реки, озера, моря). Там фосфор оседает на дно и почти не возвращается на сушу, лишь небольшое количество его возвращается с выловленной человеком рыбой или с экскрементами птиц, питающихся рыбой. Скопления экскрементов морских птиц служили в недалеком прошлом источником ценнейшего органического удобрения – гуано, но в настоящее время ресурсы гуано практически исчерпаны.

Отток фосфора с суши в океан усиливается вследствие возрастания поверхностного стока воды при уничтожении лесов, распашке почв и внесении фосфорных удобрений. Поскольку запасы фосфора на суше ограничены, а его возврат из океана проблематичен (хотя в настоящее время активно исследуются возможности его добычи со дна океана), в будущем в земледелии возможен острый дефицит фосфора, что вызовет снижение урожаев (в первую очередь зерна). Поэтому необходима экономия ресурсов фосфора.

Контрольные вопросы

1. Почему круговорот фосфора называется открытым?

2. Где сконцентрированы запасы фосфора?

3. Почему фосфор концентрируется на дне океанов?

4. Какие последствия для сельского хозяйства будет иметь исчерпание запасов фософора.

13.3. Ноосфера

В заключение главы необходимо сказать несколько слов о расхожем (особенно по страницам популярных «зеленых» экологических изданий) термине «ноосфера», который был независимо внедрен в экологический обиход П. Терьяром де Шарденом и В.И. Вернадским. Однако если Терьяр де Шарден понимал под ноосферой в первую очередь глобальное развитие «коллективного разума», то Вернадский считал, что этот «коллективный разум» должен преобразовать биосферу, улучшив условия для жизни человека на планете.

Вернадский исходил из сциентистского взгляда на отношения человека и природы, т.е. считал, что наука может решить практически любые проблемы вплоть до управления основными циклами веществ и перехода человека на «автотрофное питание» с непосредственным использованием солнечной энергии для производства продуктов питания (минуя посреднеческую роль растений).

Взгляды Вернадского на ноосферу – пример экологического утопизма. Система связей в биосфере («биосферный рынок») столь сложна, что человек не может управлять ей. Серьезные вмешательства в биосферные круговороты ведут к резкому обострению экологической ситуации, что уже наблюдается сегодня (разрушение озонового экрана, потепление климата, глобальное загрязнение среды, появление новых «экологических болезней» и т.д.).

Человек может сохраниться только вместе с биосферой, «встроив» свою хозяйственную деятельность в биосферные циклы. Н.Н. Моисеев писал о возможности «коадаптации человека и биосферы» и формирования на этой основе некого «квазиустойчивого состояния» последней, при котором изменения круговоротов веществ не будут превышать пороговых значений, начиная с которых могут произойти необратимые изменения. Это новое состояние биосферы возможно при построении мирового сообщества устойчивого развития, однако рассмотрение этой проблемы лежит за рамками общей экологии.

Темы докладов на семинарских занятиях

1. Структура биосферы и ее соотношение с другими оболочками Земли по Э. Зюссу.

2. Опасность антропогенных нарушений круговоротов веществ в биосфере.

3. Критическая оценка представлений В.И. Вернадского о ноосфере.

Экосистемы - это единые природные комплексы, которые образованы совокупностью живых организмов и среды их обитания. Изучением этих формирований занимается наука экология.

Термин «экосистема» появился в 1935 г. Использовать его предложил английский эколог А. Тенсли. Природный или природно-антропогенный комплекс, в котором как живые, так и косвенные составляющие находятся в тесной взаимосвязи посредством обмена веществ и распределения потока энергии - все это входит в понятие «экосистема». Виды экосистем при этом бывают различными. Эти основные функциональные единицы биосферы подразделяет на отдельные группы и изучает экологическая наука.

Классификация по происхождению

На нашей планете существуют различные экосистемы. Виды экосистем классифицируются определенным образом. Однако связать воедино все многообразие этих единиц биосферы невозможно. Именно поэтому существует несколько классификаций экологических систем. Например, разграничивают их по происхождению. Это:

  1. Естественные (природные) экосистемы . К ним относятся те комплексы, в которых круговорот веществ осуществляется без какого-либо вмешательства человека.
  2. Искусственные (антропогенные) экосистемы. Они созданы человеком и способны существовать только при его непосредственной поддержке.

Естественные экосистемы

Природные комплексы, существующие без участия человека, имеют свою внутреннюю классификацию. Существуют следующие виды естественных экосистем по энергетическому признаку:

Находящиеся в полной зависимости от солнечного излучения;

Получающие энергию не только от небесного светила, но и от других естественных источников.

Первый из этих двух видов экосистем является малопродуктивным. Тем не менее такие природные комплексы крайне важны для нашей планеты, поскольку существуют на огромных площадях и влияют на формирование климата, очищают большие объемы атмосферы и т.д.

Природные комплексы, получающие энергию от нескольких источников, являются наиболее продуктивными.

Искусственные единицы биосферы

Различны и антропогенные экосистемы. Виды экосистем, входящих в эту группу, включают в себя:

Агроэкосистемы, появляющиеся как результат ведения человеком сельского хозяйства;

Техноэкосистемы, возникающие в результате развития промышленности;

Урбаноэкосистемы, являющиеся результатом создания поселений.

Все это виды антропогенных экосистем, созданных при непосредственном участии человека.

Разнообразие естественных компонентов биосферы

Типы и виды экосистем природного происхождения бывают различными. Причем экологи выделяют их исходя из климатических и природных условий их существования. Так, различают три группы и целый ряд разнообразных единиц биосферы.

Основные виды экосистем природного происхождения:

Наземная;

Пресноводная;

Морская.

Наземные природные комплексы

Многообразие видов экосистем наземного типа включает в себя:

Арктическую и альпийскую тундру;

Хвойные бореальные леса;

Листопадные массивы умеренной зоны;

Саванны и тропические злаковники;

Чапарали, являющиеся районами с засушливым летом и дождливой зимой;

Пустыни (как кустарниковые, так и травянистые);

Полувечнозеленые тропические леса, расположенные в районах с ярко выраженными сухими и влажными сезонами;

Тропические вечнозеленые дождевые леса.

Кроме основных видов экосистем существуют и переходные. Это лесотундры, полупустыни и т. д.

Причины существования различных видов естественных комплексов

По какому принципу размещаются на нашей планете различные природные экосистемы? Виды экосистем естественного происхождения находятся в той или иной зоне в зависимости от количества осадков и температуры воздуха. Известно, что климат в различных уголках земного шара имеет существенные различия. При этом неодинакова и годовая сумма выпадающих осадков. Она может находиться в пределах от 0 до 250 и более миллиметров. При этом осадки выпадают либо равномерно в течение всех сезонов, либо приходятся в основной доле на определенный влажный период. Разнится на нашей планете и среднегодовая температура. Она может иметь значения от отрицательных величин или достигать тридцати восьми градусов тепла. Различно и постоянство нагрева воздушных масс. Оно может как не иметь существенных отличий в течение года, как, например, у экватора, так и постоянно меняться.

Характеристика естественных комплексов

Разнообразие видов природных экосистем наземной группы приводит к тому, что каждая из них обладает своими отличительными особенностями. Так, в тундрах, которые находятся к северу от тайги, наблюдается очень холодный климат. Для этой местности характерны отрицательная среднегодовая температура и смена полярного дня и ночи. Лето в этих краях длится всего несколько недель. При этом земля успевает оттаять на небольшую метровую глубину. Осадки в тундре выпадают менее чем на 200-300 миллиметров в течение года. Из-за таких климатических условий эти земли бедны растительностью, представленной медленно растущими лишайниками, мхом, а также карликовыми или стелющимися кустарниками брусники и черники. Временами можно встретить

Не отличается богатством и животный мир. Он представлен северными оленями, мелкими роющими млекопитающими, а также такими хищниками, как горностай, песец и ласка. Мир птиц представлен полярной совой, пуночкой и ржанкой. Насекомые в тундре в большинстве своем - виды двукрылых. Тундровая экосистема весьма ранима из-за плохой способности к восстановлению.

Большим разнообразием отличается тайга, расположенная в северных районах Америки и Евразии. Для этой экосистемы характерна холодная и долгая зима и многочисленные осадки в виде снега. Растительный мир представлен вечнозелеными хвойными массивами, в которых растет пихта и ель, сосна и лиственница. Представители животного мира - лоси и барсуки, медведи и белки, соболя и росомахи, волки и рыси, лисы и норки. Для тайги характерно наличие множества озер и болот.

Широколиственными лесами представлены следующие экосистемы. Виды экосистем этого типа находятся на востоке США, в Восточной Азии и в Западной Европе. Это зона сезонного климата, где температура зимой опускается ниже нулевой отметки, а в течение года выпадает от 750 до 1500 мм осадков. Растительный мир такой экосистемы представлен такими широколиственными деревьями, как бук и дуб, ясень и липа. Есть здесь кустарники и мощный травяной слой. Животный мир представлен медведями и лосями, лисицами и рысями, белками и землеройками. Обитают в такой экосистеме совы и дятлы, дрозды и соколы.

Степные умеренные зоны находятся в Евразии и Северной Америке. Их аналогами являются туссоки в Новой Зеландии, а также пампасы в Южной Америке. Климат в этих районах отличается сезонностью. В летний период воздух нагревается от умеренно теплых значений до весьма высоких. Зимние температуры отрицательны. В течение года здесь наблюдается от 250 до 750 миллиметров осадков. Растительный мир степей представлен в основном дерновинными злаками. Среди животных встречаются бизоны и антилопы, сайгаки и суслики, кролики и сурки, волки и гиены.

Чапарали располагаются в Средиземноморье, а также в Калифорнии, Грузии, Мексике и на южных берегах Австралии. Это зоны мягкого умеренного климата, где выпадает от 500 до 700 миллиметров осадков в течение года. Из растительности здесь имеются кустарники и деревья с вечнозелеными жесткими листиками, такие как дикая фисташка, лавр и др.

Такие экологические системы, как саванны, располагаются в Восточной и Центральной Африке, Южной Америке и в Австралии. Значительная их часть находится в Южной Индии. Это зоны жаркого и сухого климата, где в течение года выпадает от 250 до 750 мм осадков. Растительность в основном - злаковая травянистая, только кое-где встречаются редкие листопадные деревья (пальмы, баобабы и акации). Животный мир представлен зебрами и антилопами, носорогами и жирафами, леопардами и львами, грифами и т. д. Много в этих краях кровососущих насекомых, таких как муха цеце.

Пустыни встречаются в некоторых районах Африки, на севере Мексики и т. д. Климат здесь сухой, с выпадением осадков менее 250 мм в год. Дни в пустынях жаркие, а ночи холодные. Растительность представлена кактусами и редкостойными кустарниками с обширными корневыми системами. Среди представителей животного мира распространены суслики и тушканчики, антилопы и волки. Это хрупкая экосистема, легко разрушающаяся под воздействием водной и ветровой эрозии.

Полувечнозеленые тропические листопадные леса встречаются в Центральной Америке и Азии. В этих зонах наблюдается сменность сухого и влажного сезонов. Среднегодовое количество осадков - от 800 до 1300 мм. Тропические леса населяет богатый животный мир.

Дождевые тропические вечнозеленые леса находятся во многих уголках нашей планеты. Есть они в Центральной Америке, на севере Южной Америки, в центральной и западной части экваториальной Африки, в прибрежных районах северо-западной Австралии, а также на островах Тихого и Индийского океанов. Теплые климатические условия в этих краях не отличаются сезонностью. Обильные осадки превышают предел в 2500 мм в течение года. Эта система отличается огромным разнообразием растительного и животного мира.

Существующие природные комплексы, как правило, не имеют каких-либо четких границ. Между ними обязательно находится переходная зона. В ней не только происходит взаимодействие популяций разных видов экосистем, но и встречаются особые виды живых организмов. Таким образом, переходная зона включает в себя большее разнообразие представителей фауны и флоры, чем близлежащие к ней территории.

Водные природные комплексы

Данные единицы биосферы могут существовать в пресных водоемах и морях. К первым из них относятся такие экосистемы, как:

Лентические - это водохранилища, то есть стоячие воды;

Лотические, представленные ручьями, реками, родниками;

Области апвеллинга, где осуществляется продуктивное рыболовство;

Проливы, бухты, лиманы, являющиеся эстуариями;

Глубоководные зоны рифов.

Пример природного комплекса

Экологи различают большое разнообразие видов природных экосистем. Тем не менее существование каждой из них происходит по одной и той же схеме. Для того чтобы наиболее глубоко понять взаимодействие всех живых и неживых существ в единице биосферы, рассмотрим вид Все проживающие здесь микроорганизмы и животные оказывают непосредственное влияние на химический состав воздуха и почвы.

Луг - это равновесная система, включающая в себя различные элементы. Одни из них - макропродуценты, которыми является травянистая растительность, создают органическую продукцию этого наземного сообщества. Далее жизнь природного комплекса осуществляется за счет биологической пищевой цепочки. Растительные животные или первичные консументы питаются луговыми травами и их частями. Это такие представители фауны, как крупные травоядные и насекомые, грызуны и многие виды беспозвоночных (суслик и заяц, куропатка и т. д.).

Первичные консументы идут в пищу вторичным, к которым относят плотоядных птиц и млекопитающих (волк, сова, ястреб, лисица и т. д.). Далее к работе подключаются редуценты. Без них невозможно полное описание экосистемы. Виды многих грибов и бактерий и являются этими элементами в природном комплексе. Редуценты разлагают органические продукты до минерального состояния. Если температурные условия благоприятны, то растительные остатки и мертвые животные быстро распадаются на простые соединения. Некоторые из этих компонентов содержат в своем составе элементы питания, которые выщелачиваются и используются повторно. Более устойчивая часть органических остатков (гумус, целлюлоза и т. д.) разлагается медленнее, питая растительный мир.

Антропогенные экосистемы

Рассмотренные выше природные комплексы способны существовать без какого-либо вмешательства человека. Совсем по-другому обстоит дело в антропогенных экосистемах. Их связи работают только при непосредственном участии человека. К примеру, агроэкосистема. Основным условием ее существования является не только использование солнечной энергии, но и поступление "дотаций" в виде своеобразного горючего.

Частично эта система похожа на природную. Сходство с естественным комплексом наблюдается во время роста и развития растений, происходящего за счет энергии Солнца. Однако ведение сельского хозяйства невозможно без подготовки почвенного слоя и уборки урожая. А эти процессы требуют энергетических субсидий человеческого общества.

К какому виду экосистем относится город? Это антропогенный комплекс, в котором большое значение имеет энергия топлива. Ее расход по сравнению с потоком солнечных лучей выше в два-три раза. Город можно сравнить с глубоководными или пещерными экосистемами. Ведь существование именно этих биогеоценозов во многом зависит от поступления веществ и энергии извне.

Городские экосистемы возникли в результате исторического процесса, именуемого урбанизацией. Под его влиянием население стран покидало сельские местности, создавая большие поселения. Постепенно города все больше и больше усиливали свою роль в развитии общества. При этом для улучшения жизни человек сам создал сложную урбанистическую систему. Это привело к некоторому отрыву городов от природы и нарушению существующих естественных комплексов. Систему населенного пункта можно назвать урбанистической. Однако по мере развития промышленности все несколько изменилось. К какому виду экосистем относится город, на территории которого работает завод или фабрика? Скорее, ее можно назвать промышленно-урбанистической. Этот комплекс состоит из жилых зон и территорий, на которых располагаются объекты, производящие разнообразную продукцию. Экосистема города отличается от природной более обильным и, кроме того, ядовитым потоком различных отходов.

Для того чтобы улучшить среду своего обитания, человек создает вокруг своих населенных пунктов так называемые зеленые пояса. Они состоят из травяных газонов и кустарников, деревьев и прудов. Эти небольшие по размеру природные экосистемы создают органическую продукцию, которая не играет особой роли в городской жизни. Для существования людям нужны пища, горючее, вода и электричество извне.

Процесс урбанизации значительно изменил жизнь нашей планеты. Воздействие искусственно созданной антропогенной системы в большой степени изменило природу на обширных территориях Земли. При этом город влияет не только на те зоны, где находятся сами архитектурно-строительные объекты. Он воздействует на огромные территории и за своими пределами. К примеру, при увеличении спроса на продукцию деревообрабатывающей промышленности человек вырубает лесные массивы.

В процессе функционирования города в атмосферу попадает множество разнообразных веществ. Они загрязняют воздух и изменяют климатические условия. В городах выше облачность и меньше солнечного света, больше тумана и мороси, а также немного теплее, чем в близлежащей сельской местности.

© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары