Вконтакте Facebook Twitter Лента RSS

Что входит в состав клеточной стенки. Клеточная оболочка, ее образование и рост

Клеточная стенка - это дополнительная оболочка, которая располагается поверх (с внешней стороны) цитоплазматической мембраны и образуется в процессе жизнедеятельности самой клеткой. Такая оболочка есть у клеток не всех организмов, а только у растений , грибов, бактерий , части простейших (одноклеточных эукариот). Ее нет у животных клеток и многих простейших.

Строение и функции клеточной стенки взаимосвязанно формировались в процессе эволюции. При этом ее химическое строение (в большей степени) и функции (в меньшей) у разных групп организмов различаются. Так у растений основным компонентом оболочки является целлюлоза, у грибов - хитин, у бактерий - муреин .

Обычно в школьном курсе цитологии подробно рассматриваются строение и функции растительной клеточной стенки (оболочки).

Целлюлоза представляет собой линейный полисахарид, мономером которого является глюкоза. В составе клеточной стенки молекулы целлюлозы соединяются между собой водородными связями и образуют микрофибриллу (пучок). В оболочке множество таких фибрилл. Часть из них расположены параллельно друг другу, другая часть - под углом к первой и т. д. Такое строение создает прочный каркас.

Кроме целлюлозы, в состав клеточной стенки растений входят другие вещества (вода, гемицеллюлоза, пектиновые вещества, белки и др.). Они формируют матрикс, в котором находятся фибриллы. Вода составляет 60-70% массы оболочки. Молекулы гемицеллюлозы более короткие и разветвленные по-сравнению с целлюлозой, они связывают между собой микрофибриллы.

Пектины также представляют собой полисахариды (линейные и разветвленные), основным мономером которых является галактуроновая кислота. Также в их состав входят арабинозы и галактозы, остатки метанола. Пектиновые вещества имеют кислую природу, могут быть растворимыми и нерастворимыми. Растворимые пектины при добавлении сахара переходят в гелеобразное состояние. Из-за этой особенности их используют в пищевой промышленности в качестве желирующих веществ.

Стенки соседних клеток растений не примыкают друг к другу непосредственно. Между ними находится срединная пластинка , образованная из студнеобразных пектатов магния и кальция.

Соседние клетки растений связаны между собой через плазмодесмы - цитоплазматические мостики, проходящие через отверстия в клеточных стенках и срединных пластинках.

У большинства растительных клеток кроме первичной, после завершения роста и дифференциации, образуется вторичная стенка. Она формируется между цитоплазматической мембраной и первичной оболочкой и состоит из нескольких слоев целлюлозы. При этом фибриллы каждого слоя располагаются под своим углом. Данная структура придает клетке еще большую прочность. Вторичной стенки нет у клеток мягких тканей (например, у мезофилльной ткани листа).

Одревеснение ряда тканей растения связано с так называемой лигнификацией . Вещество лигнин придает стенкам особую прочность и жесткость.

Рассмотрев строение, обратимся к функциям клеточных стенок. У растений нет скелета, однако многие из них достигают огромных размеров, что невозможно без какой-либо внутренней опоры. Ее то совместно и выполняют жесткие оболочки клеток. Итак, главная функция клеточных стенок растений - это обеспечение опоры за счет создания прочного каркаса.

Стенки ограничивают рост клеток и препятствуют их разрыву, не давая в определенных условиях излишкам воды поступать в клетки. Микрофибриллы целлюлозы, ориентируясь определенным образом, определяют направление роста клетки. Так, если волокна преимущественно идут поперек, то рост будет идти вдоль.

У растений есть ткани, выполняющие транспортную функцию. Некоторые из них состоят из мертвых клеток, а функцию транспорта обеспечивают исключительно клеточные стенки.

У некоторых клеток их оболочки служат для хранения запаса питательных веществ.

Клеточная стенка представляет собой жесткий, полупроницаемый защитный слой в некоторых типах клеток. Это внешнее покрытие расположено рядом с в большинстве клеток растений, грибов, бактерий, водорослей и некоторых археев. Тем не менее, животные не имеют клеточной стенки. Она выполняет множество важных функций, включая защиту и структурную поддержку.

Особенности строение клеточной стенки зависят от вида организма. К примеру, у растений, она обычно состоит из сильных волокон углеводной полимерной целлюлозы, которая является главным компонентом хлопка и древесины, а также используется в производстве бумаги.

Структура клеточной стенки растений

Клеточная стенка растений многослойная и включает три секции: внешний слой или средняя пластинка, первичная и вторичная клеточные стенки. Хотя все растительные клетки имеют среднюю пластинку и первичную клеточную стенку, не у всех есть вторичная клеточная стенка.

Средняя пластинка - внешней слой клеточной стенки, который содержит полисахариды, называемые пектинами. Пектины помогают в адгезии клеток, связывая стенки соседних клеток друг с другом.

Первичная клеточная стенка - слой, образованный между средней пластинкой и плазматической мембраной в растущих клетках растений. Он состоит в основном из целлюлозных микрофибрилл, содержащихся в гелеобразной матрице из гемицеллюлозных волокон и пектиновых полисахаридов. Первичная клеточная стенка обеспечивает прочность и гибкость, необходимые для роста клеток.

Вторичная клеточная стенка - слой, образованный между первичной стенкой клетки и плазматической мембраной в некоторых растительных клетках. Когда первичная клеточная стенка перестает делиться и расти, она может сгущаться, образуя вторичную клеточную стенку. Этот прочный слой укрепляет и поддерживает клетку. Кроме целлюлозы и гемицеллюлозы, некоторые вторичные клеточные стенки включают лигнин, который усиливает их и обеспечивает водопроводимость клеток сосудистой ткани растений.

Функции клеточной стенки

Основные функции клеточной стенки заключаются в том, чтобы сформировать каркас для клетки и предотвратить ее расширение. Целлюлозное волокно, структурные белки и другие полисахариды придают клеткам форму и обеспечивают поддержку. К дополнительным функциям клеточной стенки относятся:

  • Поддержка - обеспечение механической прочности и структуры, а также контроль направления роста клеток.
  • Выдерживает тургорное давление - сила воздействия содержимого клетки (протопласта) на ее стенки. Это давление помогает растению оставаться жестким и прямостоящим, но может также вызвать разрушение клетки.
  • Регулировка роста - посылает сигналы клеткам для входа в , чтобы делится и расти.
  • Регулировка диффузии - пористая структура клеточной стенки позволяет некоторым необходимым веществам, включая белки, попадать внутрь клетки, препятствуя проникновению других.
  • Связь - клетки взаимодействуют между собой через плазмодесмы (поры или каналы между стенками растительных клеток, которые позволяют молекулам и сигналам связи проходить между отдельными клетками растения).
  • Защита - осуществляет защиту клеток от вирусов и остальных опасных веществ или микроорганизмов, а также помогает предотвратить потерю воды.
  • Хранение - хранит углеводы, которые используются для роста растений, особенно в семенах.

Формируется при участии плазмалеммы. Является внеклеточным многослойным образованием, защищающем поверхность клетки, являясь по сути его наружным скелетом. Состоит из двух структур: каркаса (из нитей фибриллы целлюлозы) и матрикса гелеобразного. В состав матрикса входят полисахариды: гемицеллюлозы и пектиновые вещества. Гемицеллюлозы представляют собой ветвящиеся полимерные цепи, состоящие из различных гексоз (глюкоза, маноза, галактоза), могут быть и пентозы (ксилоза, арабиноза) и уроновые кислоты (глюкуроновая и галактуроновая). Эти компоненты гемицеллюлоз сочетаются между собой в разных количественных отношениях, образуют разнообразные комбинации. Но цепи гемицеллюлозных молекул никогда не кристаллизуются, и у них не фиксируются (не выявляются) фибриллы. Содержится высокое количество воды.

Пектины. Гетерогенная группа, в которую входят разветвленные, сильно гидротированные полимеры, которые несут отрицательные заряды из-за наличия множества остатков галактуроновой кислоты.

Благодаря этим компонентам матрикс представляет собой мягкую пластичную массу, которая является основой (каркасом).

Отдельные полимеры целлюлозы упакованы в микрофибриллы с помощью водородных связей. Придает жесткость и прочность. Между ними существуют связки, которое превращают клеточную стенку в монолит. Такие связанные микрофибриллы целлюлозы окружены еще пектинами. Они могут взаимодействовать с кальцием, кремнием. Что придает жесткость. За счет гелеобразной структуры матрикс обеспечивает диффузное пропускание воды и небольших молекул.

Клеточные стенки делятся на 3 вида: первичные, вторичные, третичные.

Первичная клетка состоит на 90% из углеводов. При делении клеток, в экваториальной плоскости клеток появляется пучок микротрубочек, расположенный между расходящимися хромосомами (фрагмопласт). Среди микротрубочек располагается много мелких пузырьков вакуолярной системы, КГ, в центральной части фрагмопласты начинают сливаться друг с другом. Образуя уплощенный диск или срединную пластинку. Состоит из полисахарида – каллезы. Более эластичный по сравнению с целлюлозой (не содержится внутри пузырьков КГ, образуется на плазмалемме). В пузырьках КГ содержатся компоненты необходимые для построения мембран двух дочерних клеток. Процесс слияния мелких вакуолей происходит от центра клетки к периферии и продолжается до тех пор, пока мембранные пузырьки сливаясь не сольются с поверхностью боковой поверхностью клетки.

Растущая первичная клеточная стенка состоит уже из 3 слоев (срединная пластинка, состоящая из аморфного матрикса, и 2 периферических, содержащих гемицеллюлозу и фибриллы). Первичная оболочка образуется за счет выделения гемицеллюлозы и фибрилл целлюлозы двумя новыми клеточными структурами. Увеличение толщины межклеточной стенки будет происходить за счет активности дочерних клеток, которая каждая со своей стороны будет выделять вещества клеточной оболочки, утолщающейся путем подслаивания все новых и новых пластов. На плазматической мембране синтезируются и полимеризуются целлюлозные фибриллы, что приводит к образованию вторичной клеточной стенки (придает клетке ее окончательную форму). Как только утолщение стенки завершается происходит ее модификация лигнином, гидрофобный полимер, синтезируется за счет окислительной полимеризации до трех остатков ароматических спиртов и служит основным компонентов древесины (20-35% в древесины – лигнин). Благодаря своему гидрофобному характеру лигнин создает гидроизоляцию в стенах и служит доп.укрепляющим материалом. Клеточная стенка одревесневает, или опробковевает (за счет кутина и суберина). В клетках эпидермы на поверхности клеточных оболочек выделяется воск.



У грибов хитин (N- ацетилглюкозамин).

Клеточная стенка представляет собой жесткую и плотную оболочку, расположенную над цитоплазматической мембраной. Этот элемент характерен для клеток бактерий, грибов и растений. Помимо защиты клетки, жесткая оболочка выполняет и ряд других, не менее важных функций.

Клеточная стенка: общие сведения

Клеточная стенка каждого организма имеет ряд особенностей. Например, у бактерий она состоит в основном из муреина. Кстати, бактериальные штаммы разделяют на два вида — грамположительные и грамотрицательные — именно благодаря особенностям строения жесткой оболочки. Это и определяет их чувствительность к антибиотикам.

Если говорить о клеточных стенках грибов, то их основными компонентами считаются хитин и глюканы. А вот оболочки водорослей могут состоять из разных полисахаридов — в основном это глюкоза и ее соединения. Кстати, состав клеточной оболочки водорослей является очень важным таксоном. Стоит вспомнить и о группе представители которой синтезируют собственную стенку из кремнезема.

Клеточная стенка растений и ее функции

Принципы строения жесткой клеточной оболочки удобнее всего изучать на примере И хотя механическая защита — это одна из самых важных она имеет намного большее значение:

  • обеспечивает механическую и химическую стойкость клетки;
  • препятствует разрыву клетки в гипотонической среде;
  • клеточная стенка является и ионообменником, так как через нее осуществляется поглощение и высвобождение ионов;
  • берет участие в транспорте органических соединений.

Строение клеточной стенки

В растительной стенке принято выделять три основных компонента: каркас, матрикс и инкрустирующие вещества.

Каркас клеточной стенки растения состоит из целлюлозы. Благодаря образованию молекулы целлюлозы образуют прочные микрофибриллы, которые погружены в основное вещества, или матрикс.

Матрикс клеточной оболочки составляет примерно 60% общей ее массы. Он заполняет пространство между микрофибриллами, а также создает прочные связи между макромолекулами, обеспечивает эластичность и прочность этой клеточной структуры. Основными компонентами матрикса являются гемицеллюлоза и пектин.

  • Гемицеллюлоза представляет собой полисахарид, по структуре своей сходный с целлюлозой, но с более короткими и разветвленными цепями мономеров.
  • также относятся к полисахаридам, но в их состав также входят остатки Благодаря образованию химических связей с ионами кальция и магния, пектин берет участие в формировании серединных пластинок — мест, где две соседние клетки соединяются между собой. Кстати, большое количество пектина содержится в плодах растений.

Инкрустирующие вещества в большинстве случаев представлены лигнином, которые составляет примерно 30% сухой массы клеточной стенки.

  • Лигнин может откладываться как в виде сплошного слоя, так и в форме отдельных элементов — спиралей, сеток или колец. Это вещество действует как цемент — оно скрепляет волокна целлюлозы между собой. Благодаря лигнификации, клеточная стенка становиться более стойкой и мене водопроницаемой. Кстати, именно лигнин отвечает за одревеснение растений.

Довольно часто на внешнюю поверхность клеточной оболочки откладываются такие вещества, как кутин, суберин и воск.

Суберин откладывается на внутреннюю сторону клеточной оболочки, обеспечивая процесс опробковения. Такая клетка становится абсолютно непроницаемой для влаги, поэтому ее содержимое быстро отмирает, а свободное пространство заполняется воздухом.

Основная функция восковых веществ и кутикулы — это защита клеток от проникновения инфекции, а также снижение уровня испарения воды.

Можно сказать, что клеточная стенка — это очень важный элемент растительной клетки, который обеспечивает ее нормальное развитие.

Клеточная стенка -- жёсткая оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Она придает клеткам механическую прочность, защищает их содержимое от повреждений и избыточной потери воды, поддерживает форму клеток и их размер, а также препятствует разрыву клеток в гипотонической среде. Клеточная стенка участвует в поглощении и обмене различных ионов, т. е. является ионообменником. Через клеточную оболочку осуществляется транспорт веществ.

Обнаруживается у большинства бактерий, архей, грибов и растений. Животные и многие простейшие не имеют клеточной стенки.

Клеточная стенка, формирующаяся во время деления клеток и их роста путем растяжения, называется первичной. После прекращения роста клетки на первичную клеточную стенку изнутри откладываются новые слои, и образуется прочная вторичная клеточная оболочка

Рис.10 .

В состав клеточной стенки входят структурные компоненты (целлюлоза у растений и хитин у грибов), компоненты матрикса (гемицеллюлоза, пектин, белки), инкрустирующие компоненты (лигнин, суберин) и вещества, откладывающиеся на поверхности оболочки (кутин и воск).

Молекулы целлюлозы за счет водородных связей объединяются в пучки --микрофибриллы. Переплетенные микрофибриллы составляют каркас клеточной оболочки. У большинства грибов микрофибриллы клеточной стенки состоят из хитина.

Микрофибриллы погружены в матрикс клеточной стенки. Матрикс состоит из смеси различных химических веществ, среди которых преобладают полисахариды (гемицеллюлозы и пектиновые вещества).

Гемицеллюлозы -- это группа полисахаридов (полимеры пен-тоз и гексоз -- ксилозы, галактозы, маннозы, глюкозы и др.). Молекулы гемицеллюлоз, как и целлюлозы, имеют форму цепи, но в отличие от последней их цепи короче, менее упорядочены и сильно разветвлены. Они легче растворяются и разрушаются ферментами.

Пектиновые вещества -- это полимеры, построенные из моносахаридов (арабинозы и галактозы), галактуроновой кислоты (сахарной кислоты) и метилового спирта. Длинные молекулы пектиновых веществ могут быть линейны ми или разветвленными. Молекулы пектиновых веществ содержат большое количество карбоксильных групп и поэтому способны соединяться с ионами Mg2+ и Са2-. При этом образуются клейкие, студнеобразные пектаты магния и кальция, из которых затем складываются срединные пластинки, скрепляющие стенки двух соседних клеток.

Ионы двухвалентных металлов могут обмениваться на другие катионы (Н-, К+ и т. д.). Это обусловливает катионообменную способность клеточных оболочек.

Пектиновыми веществами и пектатами богаты оболочки клеток многих плодов. Так как при их извлечении из оболочек и добавлении сахара образуются гели, пектины используют как желе-образующие вещества для изготовления мармелада и др.

Помимо углеводных компонентов, в состав матрикса клеточной стенки входит структурный белок экстенеин --гликонротеин, который по своему составу близок к межклеточным белкам животных --коллагенам.

На долю матрикса приходится до 60% сухого вещества клеточной оболочки. Матрикс оболочки не просто заполняет промежутки между микрофибриллами, а образует прочные химические (водородные и ковалентные) связи между макромолекулами и микрофибриллами, что обеспечивает прочность клеточной стенки, ее эластичность и пластичность.

Основным инкрустирующим веществом оболочки клеток растений является лигнин -- полимер с неразветвленной молекулой, состоящей из ароматических спиртов.

Интенсивная лигнификация (пропитка слоев целлюлозы лигнином) клеточных оболочек начинается после прекращения роста клетки. Лигнин может откладываться отдельными участками -- в виде колец, спиралей или сетки, как это наблюдается в оболочках клеток проводящей ткани -- ксилемы, или сплошным слоем, за исключением тех мест, где осуществляются контакты между соседними клетками в виде плазмодесм.

Лигнин скрепляет целлюлозные волокна и действует как очень твердый и жесткий каркас, усиливающий прочность клеточных стенок на растяжение и сжатие. Он же обеспечивает клеткам дополнительную защиту от физических и химических воздействий, снижает водопроницаемость. Содержание лигнина в оболочке достигает 30%. Инкрустация им клеточных оболочек приводит к их одревеснению, которое часто влечет за собой отмирание живого содержимого клетки.

Лигнин в сочетании с целлюлозой придает особые свойства древесине, которые делают ее незаменимым строительным материалом.

На клеточную оболочку могут откладываться также жироподобные вещества -- суберин, кутин и воск.

Суберин откладывается на оболочку изнутри и делает ее практически непроницаемой для воды и растворов. В результате протопласт клетки отмирает и клетка заполняется воздухом. Такой процесс называется опробковением. Наблюдается опробковение оболочки клеток в покровных тканях многолетних древесных растений -- перидерме, корке, а также в эндодерме корня.

Поверхность эпидермальных клеток растений защищена гидрофобными веществами -- кутином и восками. Предшественники этих соединений секретируются из цитоплазмы на поверхность, где и происходит их полимеризация. Слой кутина обычно пронизан полисахаридными компонентами (целлюлозой и пектином) и образует кутикулу. Воск часто откладывается в кристаллической форме на поверхности частей растений (листьев, плодов), образуя восковой налет.

Кутикула и восковой налет защищают клетки от повреждений и проникновения инфекции, уменьшают испарение воды с поверхности органов.

В оболочках эпидермальных клеток некоторых растений (злаков, осок и др.) накапливается большое количество минеральных веществ (минерализация), в первую очередь карбоната кальция и кремнезема. При минерализации листья и стебли растений становятся жесткими, твердыми и в меньшей степени поедаются животными.

Таким образом, клеточная стенка играет важную роль в жизни клеток растений и грибов и выполняет ряд специфических функций.

Поры клеточной стенки растений

В стенках соседних клеток, как правило, одна против другой, образуются поры. Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка (рис. 11). Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется.

Каждая пора имеет поровую камеру. В тех случаях, когда откладывается мощная вторичная оболочка, камеры превращаются в узкие поровые каналы. В клетках паренхимных и механических тканей вторичная оболочка обычно резко прерывается у краев камеры или порового канала, диаметр которых благодаря этому почти не изменяется по всей толще вторичной оболочки. Поры такого типа называются простыми, а комбинация двух простых пор - простой парой пор.

В водопроводящих элементах - сосудах и трахеидах - вторичная оболочка нередко нависает над камерой в виде свода, образуя окаймление. Такие поры получили название окаймленных или окаймленной пары пор. Поровая камера, ограниченная окаймлением, открывается в полость клетки через отверстие в окаймлении - апертуру поры. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке.

Рис. 11. Строение пор стенки растительной клетки (А - клетки со вторичными оболочками и многочисленными простыми порами, Б - строение простой поры, В - строение окаймленной поры, Г - объемное изображение и схематичная проекция на плоскость окаймленной поры).1 - срединная пластинка, 2 - первичная оболочка клетки, 3 - вторичная оболочка клетки, 4 - поры, 5 - поровая мембрана, 6 - окаймление, 7 - поровая камера, 8 - аппертура поры, 9 - торус (утолщение поровой мембраны).

© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары