Вконтакте Facebook Twitter Лента RSS

Туннельных эффект подразумевает то что квантовые объекты. Туннельный эффект: на грани миров

  • Перевод

Начну с двух простых вопросов с достаточно интуитивными ответами. Возьмём чашу и шарик (рис. 1). Если мне нужно, чтобы:

Шарик оставался неподвижным после того, как я помещу его в чашу, и
он оставался примерно в том же положении при перемещении чаши,

То куда мне его положить?

Рис. 1

Конечно, мне нужно положить его в центр, на самое дно. Почему? Интуитивно ясно, что если я положу его куда-то ещё, он скатится до дна, и будет болтаться туда и сюда. В итоге трение уменьшит высоту болтаний и затормозит его внизу.

В принципе можно попробовать уравновесить шарик на краю чаши. Но если я немного потрясу её, шарик потеряет равновесие у падёт. Так что это место не удовлетворяет второму критерию в моём вопросе.

Назовём положение, в котором шарик остаётся неподвижным, и от которого он не сильно отклоняется при небольших движениях чаши или шарика, «стабильным положением шарика». Дно чаши - такое стабильное положение.

Другой вопрос. Если у меня есть две чаши, как на рис. 2, где будут стабильные положения для шарика? Это тоже просто: таких мест два, а именно, на дне каждой из чаш.


Рис. 2

Наконец, ещё один вопрос с интуитивно понятным ответом. Если я размещу шарик на дне чаши 1, а потом выйду из комнаты, закрою её, гарантирую, что никто туда не зайдёт, проверю, что в этом месте не было землетрясений и других потрясений, то каковы шансы, что через десять лет, когда я вновь открою комнату, я обнаружу шарик на дне чаши 2? Конечно, нулевые. Чтобы шарик переместился со дна чаши 1 на дно чаши 2, кто-то или что-то должны взять шарик и переместить его с места на место, над краем чаши 1, в сторону чаши 2 и затем над краем чаши 2. Очевидно, что шарик останется на дне чаши 1.

Очевидно и по сути верно. И всё же, в квантовом мире, в котором мы живём, ни один объект не остаётся по-настоящему неподвижным, и его положение точно неизвестно. Так что ни один из этих ответов не верен на 100%.

Туннелирование



Рис. 3

Если я размещу элементарную частицу вроде электрона в магнитной ловушке (рис. 3) работающей, как чаша, стремящейся подтолкнуть электрон к центру точно так же, как гравитация и стены чаши толкают шарик к центру чаши на рис. 1, тогда каково будет стабильное положение электрона? Как и следовало интуитивно ожидать, среднее положение электрона будет стационарным, только если разместить его в центре ловушки.

Но квантовая механика добавляет один нюанс. Электрон не может оставаться неподвижным; его положение подвержено «квантовому дрожанию». Из-за этого его положение и движение постоянно меняется, или даже обладает некоей долей неопределённости (это работает знаменитый «принцип неопределённости»). Только среднее положение электрона находится в центре ловушки; если посмотреть на электрон, то он окажется где-нибудь в другом месте ловушки, рядом с центром, но не совсем там. Электрон неподвижен только в таком смысле: он обычно двигается, но его движение случайное, и поскольку он находится в ловушке, в среднем он никуда не сдвигается.

Это немного странно, но всего лишь отражает тот факт, что электрон представляет собой не то, что вы думаете, и не ведёт себя так, как любой из виденных вами объектов.

Это, кстати, также гарантирует, что электрон нельзя уравновесить на краю ловушки, в отличие от шарика на краю чаши (как внизу на рис. 1). Положение электрона не определено точно, поэтому его нельзя точно уравновесить; поэтому, даже без встряхиваний ловушки, электрон потеряет равновесие и почти сразу сорвётся.

Но что более странно, так это тот случай, когда у меня будет две ловушки, отделённые друг от друга, и я размещу электрон в одной из них. Да, центр одной из ловушек - хорошее, стабильное положение для электрона. Это так - в том смысле, что электрон может оставаться там и не убежит, если потрясти ловушку.

Однако, если разместить электрон в ловушке №1, и уйти, закрыть комнату и т.п., существует определённая вероятность того (рис. 4), что, когда я вернусь электрон будет находиться в ловушке №2.


Рис. 4

Как он это сделал? Если представлять себе электроны в виде шариков, вы этого не поймёте. Но электроны не похожи на шарики (или, по крайней мере, на ваше интуитивное представление о шариках), и их квантовое дрожание даёт им крайне небольшой, но ненулевой шанс «прохода сквозь стены» - кажущаяся невероятной возможность переместиться на другую сторону. Это называется туннелированием - но не надо думать, что электрон прокапывает дырку в стене. И вы никогда не сможете поймать его в стене - так сказать, с поличным. Просто стена не полностью непроницаема для таких вещей, как электрон; электроны нельзя так легко поймать в ловушку.

На самом деле, всё ещё безумнее: поскольку это правда для электрона, это правда и для шарика в вазе. Шарик может оказаться в вазе 2, если подождать достаточно долго. Но вероятность этого чрезвычайно мала. Так мала, что даже если подождать миллиард лет, или даже миллиарды миллиардов миллиардов лет, этого будет недостаточно. С практической точки зрения этого «никогда» не произойдёт.

Наш мир - квантовый, и все объекты состоят из элементарных частиц и подчиняются правилам квантовой физики. Квантовое дрожание присутствует постоянно. Но большая часть объектов, масса которых велика по сравнению с массой элементарных частиц - шарик, к примеру, или даже пылинка - это квантовое дрожание слишком мелкое, чтобы его обнаружить, за исключением особо разработанных экспериментов. И следующая из этого возможность туннелировать сквозь стены тоже не наблюдается в обычной жизни.

Иначе говоря: любой объект может туннелировать сквозь стену, но вероятность этого обычно резко уменьшается, если:

У объекта большая масса,
стена толстая (большое расстояние между двумя сторонами),
стену трудно преодолеть (чтобы пробить стену, нужно много энергии).

В принципе шарик может преодолеть край чаши, но на практике это может оказаться невозможным. Электрону может быть легко сбежать из ловушки, если ловушки расположены близко и не очень глубокие, но может быть и очень сложно, если они расположены далеко и очень глубокие.

А точно туннелирование происходит?



Рис. 5

А может, это туннелирование - просто теория? Точно нет. Оно фундаментально для химии, происходит во многих материалах, играет роль в биологии, и это принцип, используемый в наших самых хитрых и мощных микроскопах.

Для краткости давайте я остановлюсь на микроскопе. На рис. 5 представлено изображение атомов, сделанное при помощи сканирующего туннельного микроскопа . У такого микроскопа есть узкая игла, чей кончик двигается в непосредственной близости к изучаемому материалу (см. рис. 6). Материал и иголка, разумеется, состоят из атомов; а на задворках атомов находятся электроны. Грубо говоря, электроны находятся в ловушке внутри изучаемого материала или на кончике микроскопа. Но чем ближе кончик к поверхности, тем более вероятен туннельный переход электронов между ними. Простое устройство (между материалом и иглой поддерживается разница потенциалов) гарантирует, что электроны предпочтут перескакивать с поверхности на иглу, и этот поток - электрический ток, поддающийся измерению. Игла двигается над поверхностью, и поверхность оказывается то ближе, то дальше от кончика, и ток меняется - становится сильнее с уменьшением расстояния и слабее с увеличением. Отслеживая ток (или, наоборот, двигая иглу вверх и вниз для поддержания постоянного тока) при сканировании поверхности, микроскоп делает вывод о форме этой поверхности, и часто детализации хватает для того, чтобы разглядеть отдельные атомы.


Рис. 6

Туннелирование играет и множество других ролей в природе и современных технологиях.

Туннелирование между ловушками разной глубины

На рис. 4 я подразумевал, что у обеих ловушек одинаковая глубина - точно так же, как у обеих чаш на рис. 2 одинаковая форма. Это означает, что электрон, находясь в любой из ловушек, с одинаковой вероятностью перескочит в другую.

Теперь допустим, что одна ловушка для электрона на рис. 4 глубже другой - точно так же, как если бы одна чаша на рис. 2 была глубже другой (см. рис. 7). Хотя электрон может туннелировать в любом направлении, ему будет гораздо проще туннелировать из более мелкой в более глубокую ловушку, чем наоборот. Соответственно, если мы подождём достаточно долго, чтобы у электрона было достаточно времени туннелировать в любом направлении и вернуться, а затем начнём проводить измерения с целью определить его местонахождение, мы чаще всего будем находить его в глубокой ловушке. (На самом деле и тут есть свои нюансы, всё зависит ещё и от формы ловушки). При этом разница глубин не обязательно должна быть крупной для того, чтобы туннелирование из более глубокой в более мелкую ловушку стало чрезвычайно редким.

Короче, туннелирование в целом будет происходить в обоих направлениях, но вероятность перехода из мелкой ловушки в глубокую гораздо больше.


Рис. 7

Именно эта особенность используется в сканирующем туннельном микроскопе, чтобы гарантировать, что электроны будут переходить только в одном направлении. По сути кончик иглы микроскопа оказывается более глубокой ловушкой, чем изучаемая поверхность, поэтому электроны предпочитают туннелировать из поверхности на иглу, а не наоборот. Но микроскоп будет работать и в противоположном случае. Ловушки делаются глубже или мельче при помощи источника питания, создающего разность потенциалов между иглой и поверхностью, что создаёт разницу в энергиях у электронов на игле и электронов на поверхности. Поскольку заставить электроны чаще туннелировать в одном направлении, чем в другом, оказывается довольно просто, это туннелирование становится практически полезным для использования в электронике.

БК Леон является ведущим онлайн-букмекером на гемблинговом рынке. Компания повышенное внимание уделяет бесперебойной работе сервиса. Также постоянно совершенствуется функционал портала. Для удобства пользователей создано зеркало Леон.

Перейти на зеркало

Что такое зеркало Леон.

Для получения доступа к официальному порталу БК Leon, необходимо воспользоваться зеркалом. Пользователю рабочее зеркало предоставляет множество преимуществ таких, как:

  • разнообразная линейка спортивных мероприятий, которые имеют высокие коэффициенты;
  • предоставление возможности игры в режиме Live, смотреть матчи будет интересным занятием;
  • подробный материал относительно проведенных соревнований;
  • удобный интерфейс, с которым быстро разберется даже неопытный пользователь.

Рабочее зеркало представляет собой копию официального портала. Он имеет идентичную функциональность и синхронную базу данных. За счет этого данные учетной записи не меняются. Разработчиками предусмотрена возможность блокировки рабочего зеркала, на такой случай предоставляется иное. Данные точные копии рассылаются и контролируются сотрудниками БК Леон. Если воспользоваться функционирующим зеркалом, то можно получить доступ к официальному порталу БК Леон.

Пользователю не составит трудностей найти зеркало, так как их список подлежит обновлению. При закрытом доступе от посетителя сайта требуется выполнить установку приложения Леон для мобильного телефона на компьютер. Также нужно поменять IP на иную страну за счет VPN. Для изменения местоположения пользователя или провайдера нужно воспользоваться TOP-браузером.

Разработчики предусмотрели различные возможности пользования зеркалом. Для этого с правой стороны сайта имеется надпись “Доступ к сайту”, зеленая кнопка “Обход блокировок” позволяет игроку зайти в подменю и добавить универсальную закладку в браузер.

Также удобство пользователю предоставляет мобильное приложение. Если необходимо узнать о новом адресе зеркала портала, можно позвонить по бесплатному телефону. Получать доступ к зеркалу позволяет канал @leonbets_official на Telegram . Приложение Leonacsess для Windows позволяет всегда получить доступ к сайту. Данные способы дают возможность получить игроку доступ к рабочему зеркалу.

Почему заблокировали основной сайт Леон

Это происходит вследствие действий службы Роскомнадзора. Это связано с отсутствием лицензии на ведение букмекерской деятельности. Синий Leon не получил лицензию, чтобы игрок не платил с выигрыша 13%.

Как зарегистрироваться на зеркале Леонбетс

Зарегистрироваться на этом сайте значительно проще, чем официально. Пользователю не требуется регистрироваться на двух порталах, что занимает до двух дней. Если отдать предпочтение рабочему зеркалу, то данная процедура будет максимально простой.

Для этого пользователю понадобится только заполнить данные относительно Ф. И. О., контакты. Также необходимо определиться с валютой, указать дату рождения и домашний адрес. Также нужно подписаться на рассылку сообщений. Это позволит оперативно получать информацию от букмекеров. Зарегистрированный пользователь получает возможность иметь доступ к личному кабинету, что позволяет произвести ставку на матчи, мероприятия. При возникновении сложностей можно обратиться в службу технической поддержки.

  • Состояния электрона в атоме водорода
  • 1.9. 1S– состояние электрона в атоме водорода
  • 1.10. Спин электрона. Принцип Паули
  • 1.11. Спектр атома водорода
  • 1.12. Поглощение света, спонтанное и вынужденное излучения
  • 1.13. Лазеры
  • 1.13.1. Инверсия населенностей
  • 1.13.2. Способы создания инверсии населенностей
  • 1.13.3. Положительная обратная связь. Резонатор
  • 1.13.4. Принципиальная схема лазера.
  • 1.14. Уравнение Дирака. Спин.
  • 2. Зонная теория твердых тел.
  • 2.1. Понятие о квантовых статистиках. Фазовое пространство
  • 2.2. Энергетические зоны кристаллов. Металлы. Полупроводники. Диэлектрики
  • Удельное сопротивление твердых тел
  • 2.3. Метод эффективной массы
  • 3. Металлы
  • 3.1. Модель свободных электронов
  • При переходе из вакуума в металл
  • 3.2. Распределение электронов проводимости в металле по энергиям. Уровень и энергия Ферми. Вырождение электронного газа в металлах
  • Энергия Ферми и температура вырождения
  • 3.3. Понятие о квантовой теории электропроводности металлов
  • 3.4. Явление сверхпроводимости. Свойства сверхпроводников. Применение сверхпроводимости
  • 3.5. Понятие об эффектах Джозефсона
  • 4. Полупроводники
  • 4.1. Основные сведения о полупроводниках. Классификация полупроводников
  • 4.2. Собственные полупроводники
  • 4.3.Примесные полупроводники
  • 4.3.1.Электронный полупроводник (полупроводник n-типа)
  • 4.3.2. Дырочный полупроводник (полупроводник р-типа)
  • 4.3.3.Компенсированный полупроводник. Частично компенсированный полупроводник
  • 4.3.4.Элементарная теория примесных состояний. Водородоподобная модель примесного центра
  • 4.4. Температурная зависимость удельной проводимости примесных полупроводников
  • 4.4.1.Температурная зависимость концентрации носителей заряда
  • 4.4.2.Температурная зависимость подвижности носителей заряда
  • 4.4.3. Температурная зависимость удельной проводимости полупроводникаn-типа
  • 4.4.5. Термисторы и болометры
  • 4.5. Рекомбинация неравновесных носителей заряда в полупроводниках
  • 4.6. Диффузия носителей заряда.
  • 4.6.1. Диффузионная длина
  • 4.6.2. Соотношение Эйнштейна между подвижностью и коэффициентом диффузии носителей заряда
  • 4.7. Эффект Холла в полупроводниках
  • 4.7.1. Возникновение поперечного электрического поля
  • 4.7.2. Применение эффекта Холла для исследования полупроводниковых материалов
  • 4.7.3. Преобразователи Холла
  • 4.8. Магниторезистивный эффект
  • 5. Электронно-дырочный переход
  • 5.1.Образование электронно-дырочного перехода
  • 5.1.1. Электронно-дырочный переход в условиях равновесия (при отсутствии внешнего напряжения)
  • 5.1.2.Прямое включение
  • 5.1.3.Обратное включение
  • 5.2.КласСификация полупроводниковых диодов
  • 5.3. Вольт-амперная характеристика электроннно-дырочного перехода. Выпрямительные, детекторные и преобразовательные диоды
  • 5.3.1.Уравнение вольт-амперной характеристики
  • Классификация полупроводниковых диодов
  • 5.3.2.Принцип действия и назначение выпрямительных, детекторных и преобразовательных диодов
  • 5.4. Барьерная емкость. Варикапы
  • 5.5.Пробой электронно-дырочного перехода
  • 5.6. Туннельный эффект в вырожденном электронно-дырочном переходе. Туннельные и обращенные диоды
  • 6.Внутренний фотоэффект в полупроводниках.
  • 6.1.Фоторезистивный эффект. Фоторезисторы
  • 6.1.1.Воздействие излучения на полупроводник
  • 5.1.2.Устройство и характеристики фоторезисторов
  • 6.2.Фотоэффект в электронно-дырочном переходе. Полупроводниковые фотодиоды и фотоэлементы.
  • 6.2.1.Воздействие света наp-n-переход
  • 7.Люминесценция твердых тел
  • 7.1.Виды люминесценции
  • 7.2.Электролюминесценция кристаллофосфоров
  • 7.2.1. Механизм свечения кристаллофосфоров
  • 7.2.2. Основные характеристики электролюминесценции кристаллофосфоров
  • 7.3.Инжекционная электролюминесценция. Устройство и характеристики светодиодных структур
  • 7.3.1.Возникновение излучения в диодной структуре
  • 7.3.2.Конструкция светодиода
  • 7.3.3.Основные характеристики светодиодов
  • 7.3.4.Некоторые применения светодиодов
  • 7.4 Понятие об инжекционных лазерах
  • 8. Транзисторы
  • 8.1.Назначение и виды транзисторов
  • 8.2.Биполярные транзисторы
  • 8.2.1 Структура и режимы работы биполярного транзистора
  • 8.2.2.Схемы включения биполярных транзисторов
  • 8.2.3.Физические процессы в транзисторе
  • 8.3.Полевые транзисторы
  • 8.3.1.Разновидности полевых транзисторов
  • 8.3.2.Полевые транзисторы с управляющим переходом
  • 8.3.3. Полевые транзисторы с изолированным затвором. Структуры мдп-транзисторов
  • 8.3.4.Принцип действия мдп-транзисторов с индуцированным каналом
  • 8.3.5. Мдп-транзисторы со встроенным каналом
  • 8.4. Сравнение полевых транзисторов с биполярными
  • Заключение
  • 1.Элементы квантовой механики 4
  • 2. Зонная теория твердых тел. 42
  • 3. Металлы 50
  • 4. Полупроводники 65
  • 5. Электронно-дырочный переход 97
  • 6.Внутренний фотоэффект в полупроводниках. 108
  • 7.Люминесценция твердых тел 113
  • 8. Транзисторы 123
  • 1.7. Понятие о туннельном эффекте.

    Туннельным эффектом называют прохождение частиц сквозь потенциальный барьер за счет волновых свойств частиц.

    Пусть частица, движущаяся слева направо, встречает на своем пути потенциальный барьер высотой U 0 и шириной l . По классическим представлениям частица беспрепятственно проходит над барьером, если ее энергия E больше высоты барьера (E > U 0 ). Если же энергия частицы меньше высоты барьера (E < U 0 ), то частица отражается от барьера и начинает двигаться в обратную сторону, сквозь барьер частица проникнуть не может.

    Вквантовой механике учитываются волновые свойства частиц. Для волны левая стенка барьера – это граница двух сред, на которой волна делится на две волны – отраженную и преломленную.Поэтому даже при E > U 0 возможно (хотя и с небольшой вероятностью) отражение частицы от барьера, а при E < U 0 имеется отличная от нуля вероятность того, что частица окажется по другую сторону потенциального барьера. В этом случае частица как бы «прошла сквозь туннель».

    Решим задачу о прохождении частицы сквозь потенциальный барьер для наиболее простого случая одномерного прямоугольного барьера, изображенного на рис.1.6. Форма барьера задается функцией

    . (1.7.1)

    Запишем уравнение Шредингера для каждой из областей: 1(x <0 ), 2(0< x < l ) и 3(x > l ):

    ; (1.7.2)

    ; (1.7.3)

    . (1.7.4)

    Обозначим

    (1.7.5)

    . (1.7.6)

    Общие решения уравнений (1), (2), (3) для каждой из областей имеют вид:

    Решение вида
    соответствует волне, распространяющейся в направлении оси x , а
     волне, распространяющейся в противоположном направлении. В области 1 слагаемое
    описывает волну, падающую на барьер, а слагаемое
     волну, отраженную от барьера. В области 3 (справа от барьера) имеется только волна, распространяющаяся в направлении x, поэтому
    .

    Волновая функция должна удовлетворять условию непрерывности, поэтому решения (6),(7),(8) на границах потенциального барьера необходимо «сшить». Для этого приравниваем волновые функции и их производные при x =0 и x = l :

    ;
    ;

    ;
    . (1.7.10)

    Используя (1.7.7) - (1.7.10), получимчетыре уравнения для определенияпяти коэффициентовА 1 , А 2 , А 3 , В 1 и В 2 :

    А 1 1 2 2 ;

    А 2 е xp ( l ) + В 2 е xp (- l )= А 3 е xp (ikl ) ;

    ik 1 – В 1 ) = 2 –В 2 ) ; (1.7.11)

    2 е xp (l )–В 2 е xp (- l ) = ik А 3 е xp (ikl ) .

    Чтобы получить пятое соотношение, введем понятия коэффициентов отражения и прозрачности барьера.

    Коэффициентом отражения назовем отношение

    , (1.7.12)

    которое определяет вероятность отражения частицы от барьера.

    Коэффициент прозрачности


    (1.7.13)

    дает вероятность того, что частица пройдет через барьер. Так как частица либо отразится, либо пройдет через барьер, то сумма этих вероятностей равна единице. Тогда

    R + D =1; (1.7.14)

    . (1.7.15)

    Это и есть пятое соотношение, замыкающее систему (1.7.11), из которой находятся всепять коэффициентов.

    Наибольший интерес представляет коэффициент прозрачности D . После преобразований получим

    , (7.1.16)

    где D 0 – величина, близкая к единице.

    Из (1.7.16) видно, что прозрачность барьера сильно зависит от его ширины l , от того, на сколько высота барьераU 0 превышает энергию частицыE , а также от массы частицыm .

    Склассической точки зрения прохождение частицы сквозь потенциальный барьер приE < U 0 противоречит закону сохранения энергии. Дело в том, что если классическая частица находилась бы в какой-то точке в области барьера (область 2 на рис. 1.7), то ее полная энергия оказалась бы меньше потенциальной энергии (а кинетическая – отрицательной!?). С квантовой точки зрения такого противоречия нет. Если частица движется к барьеру, то до столкновения с ним она имеет вполне определенную энергию. Пусть взаимодействие с барьером длится время t , тогда, согласно соотношению неопределенностей, энергия частицы уже не будет определенной; неопределенность энергии
    . Когда эта неопределенность оказывается порядка высоты барьера, он перестает быть для частица непреодолимым препятствием, и частица пройдет сквозь него.

    Прозрачность барьера резко убывает с его шириной (см. табл. 1.1.). Поэтому частицы могут проходить за счет туннельного механизма лишь очень узкие потенциальные барьеры.

    Таблица 1.1

    Значения коэффициента прозрачности для электрона при ( U 0 E ) = 5 эВ = const

    l , нм

    Мы рассмотрели барьер прямоугольной формы. В случае потенциального барьера произвольной формы, например такой, как показано на рис.1.7, коэффициент прозрачности имеет вид

    . (1.7.17)

    Туннельный эффект проявляется в ряде физических явлений и имеет важные практические приложения. Приведем некоторые примеры.

    1. Автоэлектронная (холодная) эмиссия электронов .

    В1922 г. было открыто явление холодной электронной эмиссии из металлов под действием сильного внешнего электрического поля. График зависимости потенциальной энергииU электрона от координатыx изображен на рис. Приx < 0 – область металла, в котором электроны могут двигаться почти свободно. Здесь потенциальную энергию можно считать постоянной. На границе металла возникает потенциальная стенка, не позволяющая электрону покинуть металл, он может это сделать, лишь приобретя добавочную энергию, равную работе выходаA . За пределами металла (приx > 0) энергия свободных электронов не меняется, поэтому приx> 0 графикU (x ) идет горизонтально. Создадим теперь вблизи металла сильное электрическое поле. Для этого возьмем металлический образец в форме острой иглы и подсоединим его к отрицательному полюсу источни Рис. 1.9 Принцип действия туннельного микроскопа

    ка напряжения, (он будет катодом); поблизости расположим другой электрод (анод), к которому присоединим положительный полюс источника. При достаточно большой разности потенциалов между анодом и катодом можно создать вблизи катода электрическое поле с напряженностью порядка 10 8 В/м. Потенциальный барьер на границе металл – вакуум становится узким, электроны просачиваются сквозь него и выходят из металла.

    Автоэлектронная эмиссия использовалась для создания электронных ламп с холодными катодами (сейчас они практически вышли из употребления), в настоящее время она нашла применение в туннельных микроскопах, изобретенных в 1985 г. Дж. Биннингом, Г. Рорером и Э. Руска.

    В туннельном микроскопе вдоль исследуемой поверхности перемещается зонд - тонкая игла. Игла сканирует исследуемую поверхность, находясь так близко от нее, что электроны из электронных оболочек (электронных облаков) поверхностных атомов за счет волновых свойств могут попасть на иглу. Для этого на иглу подаем “плюс” от источника, а на исследуемый образец - “минус”. Туннельный ток пропорционален коэффициенту прозрачности потенциального барьера между иглой и поверхностью, который согласно формуле (1.7.16) зависит от ширины барьера l . При сканировании иглой поверхности образца туннельный ток изменяется в зависимости от расстоянияl , повторяя профиль поверхности. Прецизионные перемещения иглы на малые расстояния осуществляют с помощью пьезоэффекта, для этого закрепляют иглу на кварцевой пластине, которая расширяется или сжимается, когда к ней прикладывается электрическое напряжение. Современные технологии позволяют изготовить иглу столь тонкую, что на ее конце располагается один единственный атом.

    Изображение формируется на экране дисплея ЭВМ. Разрешение туннельного микроскопа так высоко, что позволяет “увидеть” расположение отдельных атомов. На рис.1.10 приведено в качестве примера изображение атомной поверхности кремния.

    2. Альфа-радиоактивность (– распад ). В этом явлении происходит спонтанное превращение радиоактивных ядер, в результате которого одно ядро (его называют материнским) испускает– частицу и превращается в новое (дочернее) ядро с зарядом, меньшим на 2 единицы. Напомним, что– частица (ядро атома гелия) состоит из двух протонов и двух нейтронов.

    Если считать, что- частица существует как единое образование внутри ядра, то график зависимости ее потенциальной энергии от координаты в поле радиоактивного ядра имеет вид, показанный на рис.1.11. Он определяется энергией сильного (ядерного) взаимодействия, обусловленного притяжением нуклонов друг к другу, и энергией кулоновского взаимодействия (электростатического отталкивания протонов).

    В результате - частица в ядре, имеющая энергиюЕ  , находится за потенциальным барьером. Вследствие ее волновых свойств есть некоторая вероятность того, что- частица окажется за пределами ядра.

    3. Туннельный эффект в p - n - переходе используется в двух классах полупроводниковых приборов:туннельных иобращенных диодах . Особенностью туннельных диодов является наличие падающего участка на прямой ветви вольт-амперной характеристики - участка с отрицательным дифференциальным сопротивлением. В обращенных диодах наиболее интересным является то,что при обратном включении сопротивление оказывается меньше, чем при обратном включении. Подробнее о туннельных и обращенных диодах см. раздел 5.6.

    Может ли мяч пролететь сквозь стенку, да так, чтобы и стенка осталась стоять на месте неразрушенной, и энергия мяча при этом не изменилась? Конечно, нет, напрашивается ответ, в жизни такого не бывает. Для того чтобы пролететь сквозь стенку, мяч должен иметь достаточный запас энергии и проломить ее. Точно так же, если нужно, чтобы мяч, находящийся в ложбинке, перекатился через горку, необходимо сообщить ему запас энергии, достаточный для преодоления потенциального барьера - разности потенциальных энергий мяча на вершине и в ложбинке. Тела, движение которых описывается законами классической механики, преодолевают потенциальный барьер только тогда, когда они обладают полной энергией, большей, чем величина максимальной потенциальной энергии.

    А как обстоит дело в микромире? Микрочастицы подчиняются законам квантовой механики. Они не двигаются по определенным траекториям, а «размазаны» в пространстве, подобно волне. Эти волновые свойства микрочастиц приводят к неожиданным явлениям, и среди них едва ли не самое удивительное - туннельный эффект.

    Оказывается, что в микромире «стенка» может остаться на месте, а электрон как ни в чем не бывало пролетает сквозь нее.

    Микрочастицы преодолевают потенциальный барьер, даже если их энергия меньше, чем его высота.

    Потенциальный барьер в микромире часто создают электрические силы, и впервые с этим явлением столкнулись при облучении атомных ядер заряженными частицами. Положительно заряженной частице, например протону, невыгодно приближаться к ядру, так как, по закону, между протоном и ядром действуют силы отталкивания. Поэтому для того, чтобы приблизить протон к ядру, надо совершить работу; график потенциальной энергии имеет вид, показанный на рис. 1. Правда, достаточно протону вплотную подойти к ядру (на расстоянии см), как тут же вступают в действие мощные ядерные силы притяжения (сильное взаимодействие) и он захватывается ядром. Но ведь надо сначала подойти, преодолеть потенциальный барьер.

    И вот оказалось, что протон это делать умеет, даже когда его энергия Е меньше высоты барьера . Как всегда в квантовой механике, при этом нельзя сказать с достоверностью, что протон проникнет в ядро. Но имеется определенная вероятность такого туннельного прохождения потенциального барьера. Эта вероятность тем больше, чем меньше разность энергии и чем меньше масса частицы (причем зависимость вероятности от величины и очень резкая - экспоненциальная).

    Основываясь на идее туннелирования, Д. Кокрофт и Э. Уолтон в 1932 г. в Кавендишской лаборатории открыли искусственное расщепление ядер. Они построили первый ускоритель, и хотя энергия ускоренных протонов была недостаточна для преодоления потенциального барьера, все же протоны благодаря туннельному эффекту проникали в ядро и вызывали ядерную реакцию. Туннельный эффект также объяснил явление альфа-распада.

    Туннельный эффект нашел важное применение в физике твердого тела и в электронике.

    Представьте себе, что на стеклянную пластинку (подложку) нанесли пленку металла (обычно ее получают, напыляя металл в вакууме). Затем ее окислили, создав на поверхности слой диэлектрика (окисла) толщиной всего в несколько десятков ангстрем. И снова покрыли пленкой металла. В результате получится так называемый «сэндвич» (в буквальном смысле этим английским словом называют два куска хлеба, например, с сыром между ними), или, иначе говоря, туннельный контакт.

    Могут ли электроны переходить из одной металлической пленки в другую? Казалось бы, нет - им мешает слой диэлектрика. На рис. 2 приведен график зависимости потенциальной энергии электрона от координаты. В металле электрон движется свободно, и его потенциальная энергия равна нулю. Для выхода в диэлектрик надо совершить работу выхода , которая больше, чем кинетическая (а следовательно, и полная) энергия электрона .

    Поэтому электроны в металлических пленках разделяет потенциальный барьер, высота которого равна .

    Если бы электроны подчинялись законам классической механики, то такой барьер для них был бы непреодолим. Но вследствие туннельного эффекта с некоторой вероятностью электроны могут проникать через диэлектрик из одной металлической пленки в другую. Поэтому тонкая пленка диэлектрика оказывается проницаемой для электронов - через нее может течь так называемый туннельный ток. Однако суммарный туннельный ток равен нулю: сколько электронов переходит из нижней металлической пленки в верхнюю, столько же в среднем переходит, наоборот, из верхней пленки в нижнюю.

    Как же сделать туннельный ток отличным от нуля? Для этого надо нарушить симметрию, например подсоединить металлические пленки к источнику с напряжением U. Тогда пленки будут играть роль обкладок конденсатора, а в слое диэлектрика возникнет электрическое поле. В этом случае электронам из верхней пленки преодолеть барьер легче, чем электронам из нижней пленки. В результате даже при малых напряжениях источника возникает туннельный ток. Туннельные контакты позволяют исследовать свойства электронов в металлах, а также используются в электронике.

    Рассмотрим простейший потенциальный барьер прямоугольной формы (рис. 5.4) для одномерного (по оси х ) движения частицы.

    Для потенциального барьера прямоугольной формы высоты U и ширины l можно записать:

    При данных условиях задачи классическая частица, обладая энергией Е , либо беспрепятственно пройдет над барьером при E > U , либо отразится от него (E < U ) и будет двигаться в обратную сторону, т.е. она не может проникнуть через барьер.

    Для микрочастиц же, даже при E < U , имеется отличная от нуля вероятность, что частица отразится от барьера и будет двигаться в обратную сторону. При E > U имеется также отличная от нуля вероятность, что частица окажется в области x > l , т.е. проникнет сквозь барьер. Такой вывод следует непосредственно из решения уравнения Шредингера, описывающего движение микрочастицы при данных условиях задачи.

    Уравнение Шредингера для состояний каждой из выделенных областей имеет вид:

    , (5.4.1)
    . (5.4.2)

    Общее решение этих дифференциальных уравнений:

    (5.4.3)

    В данном случае, согласно (5.4.2), – мнимое число, где

    Можно показать, что A 1 = 1, B 3 = 0, тогда, учитывая значение q ,получим решение уравнения Шредингера для трех областей в следующем виде:

    (5.4.4)

    В области 2 функция (5.4.4) уже не соответствует плоским волнам, распространяющимся в обе стороны, поскольку показатели степени не мнимые, а действительные.

    Качественный анализ функций Ψ 1 (x ), Ψ 2 (x ), Ψ 3 (x ) показан на рис. 5.4. Из рисунка следует, что волновая функция не равна нулю и внутри барьера , а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом , т.е. с той же частотой , но с меньшей амплитудой .

    Таким образом, квантовая механика приводит к принципиально новому квантовому явлению туннельному эффекту , в результате которого микрообъект может пройти через барьер.

    Коэффициент прозрачности для барьера прямоугольной формы .

    Для барьера произвольной формы .

    Прохождение частицы сквозь барьер можно пояснить соотношением неопределенностей . Неопределенность импульса на отрезке Δx = l составляет Связанная с этим разбросом кинетическая энергия может оказаться достаточной для того, чтобы полная энергия оказалась больше потенциальной и частица может пройти через барьер.

    С классической точки зрения прохождение частицы сквозь потенциальный барьер при E < U невозможно, так как частица, находясь в области барьера, должна была бы обладать отрицательной кинетической энергией. Туннельный эффект является специфическим квантовым эффектом .

    Строгое квантово-механическое решение задачи о гармоническом осцилляторе приводит еще к одному существенному отличию от классического рассмотрения. Оказывается, что можно обнаружить частицу за пределами дозволенной области ( , ) (рис. 5.5), т.е. за точками 0 и l (рис. 5.1).

    Это означает, что частица может прибывать там, где ее полная энергия меньше потенциальной энергии. Это оказывается возможным вследствие туннельного эффекта.

    Основы теории туннельных переходов заложены работами советских ученых Л.И. Мандельштама и М.А. Леонтовича в 1928 г. Туннельное прохождение сквозь потенциальный барьер лежит в основе многих явлений физики твердого тела (например явления в контактном слое на границе двух полупроводников), атомной и ядерной физики (например α-распад, протекание термоядерных реакций).

    © 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары