Вконтакте Facebook Twitter Лента RSS

Дополнительные свойства. Окружность

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Треугольник ABC – прямоугольный (рис. 11), C = 90°, СD перпендикулярна АВ, ВD и DА – проекции катетов ВС и АС на гипотенузу АВ. Теоремы: 1) высота, проведенная из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между проекциями катетов на гипотенузу, т.е. ; 2) каждый катет – средняя пропорциональная величина между гипотенузой и проекцией этого катета на гипотенузу, т. е. , .

Теорема Пифагора. Квадрат гипотенузы равен сумме квадратов катетов.

Теорема. Если через точку, взятую внутри

круга, проведены диаметр и произвольная хорда,

то произведение длин отрезков диаметра рав-

но произведению длин отрезков хорды, т.е. (рис. 12).

Рис. 12

Следствие. Произведения длин отрезков пересекающихся хорд равны, т.е.

Теорема. Если из точки вне круга проведены касательная и се-кущая, то произведение всей секущей на ее внешнюю часть равно квадрату касательной, т.е. (рис. 13).

Рис. 13

Определения. Синусом острого угла в прямоугольном треугольнике называется отношение противолежащего этому углу катета к гипотенузе, косинусом – отношение прилежащего катета к гипотенузе, тангенсом отношение противолежащего катета к прилежащему, котангенсом – отношение прилежащего катета к противолежащему.

Из точки А вне окружности проведены касательная и секущая. Расстояние от А до точки касания 16 см, а от А до одной из точек пересечения секущей с окружностью 32 см. Найдите радиус окружности, если секущая удалена от ее центра на 5 см.

Рис. 14

На рис. 14 АВ – касательная к окружности с центром O, AD – се-кущая. OK перпендикулярна DC, АВ = 16 см, АD = 32 см, OК = 5 см. По теореме о касательной и секущей или , АС = 8 см. см. По теореме о хордах, пересекающихся внутри круга, , но DK = KC, так как EP – диаметр, перпендикулярный хорде DС. Получим . Заменим в этом равенстве ЕК на , КР на , DК на 12, получим: OE = 13 см – искомый радиус.

104. Стороны прямоугольника 30 и 40 см. Найдите расстояние

от вершины прямоугольника до диагонали, не проходящей через эту вершину.

105. Периметр ромба равен 1 м. Одна диагональ длиннее другой на

1 дм. Вычислите диагонали ромба.

В круге по разные стороны от центра проведены параллельные хорды длиной 36 и 48 мм, расстояние между ними 42 мм. Вычислите радиус круга.

Катеты прямоугольного треугольника относятся как 5: 6, гипотенуза 122 см. Найдите отрезки гипотенузы, отсекаемые высотой.

Касательная и секущая, проведенные из одной точки к окружности, взаимно перпендикулярны. Касательная равна 12, внутренняя часть секущей равна 10. Найдите радиус окружности.

К окружности с радиусом 7 см проведены две касательные из одной точки, удаленной от центра на 25 см. Найдите расстояние между точками касания.

Ширина кольца, образованного двумя концентрическими окружностями, равна 8 дм, хорда большей окружности, касательная к меньшей, равна 4 м. Найдите радиусы окружностей.

Радиус окружности 7 см. Из точки, удаленной от центра на

9 см, проведена секущая так, что она делится окружностью на равные части. Найдите длину этой секущей.

Касательная к окружности равна 20 см, а наибольшая секущая, проведенная из той же точки, равна 50 см. Найдите радиус.

Из одной точки к окружности проведены касательная и секущая, длина которой а, а её внутренний отрезок больше внешнего на длину касательной. Найдите длину касательной.

В круг радиусом R вписан равнобедренный треугольник, у которого сумма высоты и основания равна диаметру круга. Найдите высоту треугольника.

В равнобедренном треугольнике основание и боковая сторона равны соответственно 48 и 30 дм. Вычислите радиусы кругов, описанного и вписанного, и расстояние между их центрами.

Математика. Алгебра. Геометрия. Тригонометрия

ГЕОМЕТРИЯ: Планиметрия

10. Теоремы о пропорциональных линиях

Теорема. Стороны угла пересекаются рядом параллельных прямых, рассекаются ими на пропорциональные части.

Доказательство. Требуется доказать, что

.

Проведя вспомогательные прямые DM,EN,... параллельные ВА, мы получим треугольники, которые подобны между собой, так как углы у них соответственно равны (вследствие параллельности прямых). Из их подобия следует:

Заменив в этом ряду равных отношений отрезок DM на D"E" , отрезок EN на E"F" (противоположные стороны параллелограмма) , мы получим то, что требовалось доказать.

Теорема. Биссектриса любого угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам треугольника

.

Обратная теорема. Если какая-нибудь сторона треугольника разделена на две части, пропорциональные двум прилежащим сторонам этого треугольника, то прямая, соединяющая точку деления с вершиной противолежащего угла, есть биссектриса этого угла

.

Теорема. Если биссектриса внешнего угла треугольника пересекает продолжение противоположной стороны в некоторой точке, то расстояния от этой точки до концов продолженной стороны пропорциональны прилежащим сторонам треугольника

.

Числовые зависимости между элементами треугольника.

Теорема. В прямоугольном треугольнике перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная между отрезками гипотенузы, а каждый катет есть средняя пропорциональная между гипотенузой и прилежащим к этому катету отрезком

.

Доказательство. Требуется доказать следующие три пропорции: 1) BD:AD=AD:DC, 2) BC:AB=AB:DB, 3) BC:AC=AC:DC.

1) Треугольники ABD и ADC подобны, так как

Р 1=Р 4 и Р 2=Р 3 (так как их стороны перпендикулярны), следовательно BD:AD=AD:DC.

2) Треугольники ABD и AВC подобны, так как они прямоугольные и угол В у них общий, следовательно BC:AB=AB:DB.

3) Треугольники ABС и ADC подобны, так как они прямоугольные и угол С у них общий, следовательно BC:AC=AC:DC.

Следствие. Перпендикуляр, опущенный из какой-нибудь точки окружности на диаметр, есть средняя пропорциональная между отрезками диаметра, а хорда, соединяющая эту точку с концом диаметра, есть средняя пропорциональная между диаметром и прилежащим к хорде отрезком его

.

Теорема Пифагора. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов

.

Следствие. Квадраты катетов относятся между собой как прилежащие отрезки гипотенузы

.

Теорема. Во всяком треугольнике квадрат стороны, лежащей против острого угла, равен сумме квадратов двух других сторон без удвоенного

произведения какой-нибудь из этих сторон на отрезок её от вершины острого угла до высоты .

Теорема. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон

.

Пропорциональные линии в круге.

Теорема. Если через точку, взятую внутри круга, проведены какая-нибудь хорда и диаметр, то произведение отрезков хорды равно произведению отрезков диаметра .

Следствие. Если через точку, взятую внутри круга, проведено сколько угодно хорд, то произведение отрезков каждой хорды есть число постоянное для всех хорд.

Теорема. Если из точки, взятой вне круга, проведены к нему какая-нибудь секущая и касательная, то произведение секущей на её внешнюю часть равно квадрату касательной

.

Copyright © 2005-2013 Xenoid v2.0

Использование материалов сайта возможно при условии указания активной ссылки

Теорема 111 . 1) Перпендикуляр, опущенный из какой-нибудь точки окружности на диаметр, среднепропорционален между частями диаметра. Этот перпендикуляр называется иногда ординатой.

2) Хорда, соединяющая конец диаметра с точкой окружности, среднепропорциональна между диаметром и отрезком, прилежащем хорде.

Дано. Опустим из какой-нибудь точки C окружности перпендикуляр CD на диаметр AB (черт. 169).

Требуется доказать, что 1) AD/CD = CD/DB, а также 2) AD/AC = AC/AB.

Доказательство . Соединим точку C с концами диаметра AB, тогда при точке C образуется прямой угол ACB, в котором отрезок CD есть перпендикуляр, опущенный из вершины прямого угла на гипотенузу.

На основании теоремы 100 имеет место пропорция:

на основании теоремы 101 пропорция:

AD/AC = AC/AB, DB/CB = CB/AB (1)

Следствие . Квадраты хорд относятся как соответствующие отрезки диаметра.

Доказательство . Из пропорции (1) следуют равенства:

AC 2 = AB · AD, CB 2 = AB · BD

откуда по разделении находим:

AC 2 /CB 2 = AD/DB.

Теорема 112 . Части пересекающихся хорд обратно пропорциональны между собой.

Даны две пересекающиеся хорды AB и CD (черт. 170).

Требуется доказать, что

т. е. большая часть первой хорды относится к большей части второй как меньшая часть второй хорды к меньшей части первой .

Доказательство . Соединим точку A с C и B с D, тогда образуются два подобных треугольника ACE и DBE, ибо углы при точке E равны как вертикальные, ∠CAB = ∠CDB как опирающиеся на концы дуги CB, ∠ACD = ∠ABD как опирающиеся на концы дуги AD.

Из подобия треугольников ACE и DBE вытекает пропорция:

BE/DE = CE/AE (a)

Из пропорции (a) вытекает равенство:

BE · AE = DE · CE

показывающее, что произведение отрезков одной равно произведению отрезков другой хорды.

Теорема 113 . Две секущие, проведенные из одной и той же точки вне окружности, обратно пропорциональны внешним своим частям.

Даны две секущие AB и AC, проведенные из точки A (черт 171).

Требуется доказать, что

т. е. первая секущая относится ко второй, как внешняя часть второй относится к внешней части первой секущей.

Доказательство . Соединим точки D с C, а B с E.

Два треугольника ∠ABE и ∠ADC подобны, ибо угол A общий, B = C как опирающиеся на концы одной и той же дуги DE, следовательно и ∠ADC = ∠AEB.

Из подобия треугольников ADC и ABE вытекает пропорция:

AC/AB = AD/AE (ЧТД).

Из этой же пропорции вытекает равенство

AC · AE = AB · AD

показывающее, что произведение секущей на ее внешний отрезок равно произведению другой секущей на ее отрезок (если секущие выходят из одной точки).

Теорема 114 . Касательная среднепропорциональна между целой секущей и внешней ее частью.

Дана касательная AB и секущая BC (черт. 172).

Требуется доказать, что

Доказательство . Соединим точку A с точками C и D.

Треугольники ABC и ABD подобны, ибо угол B общий, ∠BAD = ∠ACD, следовательно, ∠CAB = ∠ADB.

BC/AB = AB/BD (ЧТД).

Из этой пропорции вытекает равенство:

AB 2 = BC · BD

показывающее, что квадрат касательной равен произведению секущей на внешнюю ее часть .

Свойство сторон вписанного четырехугольника

Теорема 115 . Во всяком четырехугольнике, вписанном в круг, произведение диагоналей равно сумме произведений противоположных сторон.

Это предположение, известное под именем теоремы Птоломея, встречается в первый раз в сочинении Птоломея «Альагест» во II веке по Р. Х.

Дан вписанный четырехугольник ABCD (черт. 173) и проведены диагонали AC и BD.

Требуется доказать, что AC · BD = AB · CD + BC · AD.

Доказательство . Проведем прямую BE так, чтобы угол EBC равнялся углу ABD. Два треугольника ABD и BEC подобны, ибо ∠ABD = ∠CBE по построению, ∠ADB = ∠BCE как опирающиеся на одну и ту же дугу AB, следовательно,

Из подобия этих треугольников вытекает пропорция:

BC/BD = EC/AD (a)

Треугольники ABE и BCD подобны, ибо ∠ABE = ∠DBC по построению, ∠BAE = ∠BDC как опирающиеся на дугу BC, следовательно,

∠BEA = ∠BCD.

Из подобия этих треугольников вытекает пропорция:

AB/BD = AE/CD (b)

Из пропорций (a) и (b) вытекают равенства:

BC · AD = BD · EC
AB · CD = BD · AE

Сложив эти равенства, имеем:

BC · AD + AB · CD = BD · EC + BD · AE = BD (EC + AE)

Так как EC + AE = AC, то

BD · AC = BC · AD + AB · CD (ЧТД).

Теорема 116 . Во всяком вписанном четырехугольнике диагонали относятся как суммы произведений сторон, опирающихся на концы диагоналей.

Дан вписанный четырехугольник ABCD (черт. 174) и проведены диагонали AC и BD.

Требуется доказать, что

BD/AC = (AD · DC + AB · BC) / (BC · CD + AD · AB)

Доказательство . а) От точки B отложим дугу BE равную DC и соединим точку E с точками A, B, D.

Для вписанного четырехугольника ABED имеет место равенство:

AE · BD = AD · BE + AB · DE.

Так как BE = CD по построению, DE = BC, ибо ◡DE = ◡DC + ◡CE и ◡BC = ◡BE + ◡CE.

Заменив BE и DE их величинами, имеем равенство:

AE · BD = AD · CD + AB · BC (a)

b) Отложив от точки A дугу AF равную дуге BC и соединив точку F с точками A, D, C, имеем для четырехугольника AFCD равенство:

AC · DF = AF · CD + AD · CF

В этом равенстве AF = BC по построению, CF = AB (ибо ◡CF = ◡BC + ◡BF и ◡AB = ◡AF + ◡BF = ◡BC + ◡BF)

Заменяя величины AF и CF их величинами, найдем равенство:

AC · DF = BC · CD + AD · AB (b)

В равенствах (a) и (b) отрезки AE и DF равны, ибо

◡ADE = AD + DE = ◡AD + ◡BC = ◡AD + ◡AF = ◡DAF

Разделяя равенства (a) и (b), находим:

BC/AD = (AD · C D + AB · BC) / (BC · CD + AD · AB) (ЧТД).

© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары