Вконтакте Facebook Twitter Лента RSS

Два рода зарядов и как они получаются. Электризация тел

Гистологически нервная система состоит из:

– нейронов – нервных клеток, основных структурно-функциональных единиц нервной ткани;

– нейроглии – элемента нервной ткани, обеспечивающего функционирование нейронов;

– нервных волокон – отростков нервных клеток;

– мезенхимальных элементов – сосудов и оболочек мозга.

Нейроны располагаются в сером веществе головного и спинного мозга, ганглиях (узлах). В самом общем виде функции нейронов – это генерирование управляющих импульсов, восприятие импульсов от рецепторного аппарата и других нейронов, переработка и передача импульсов на исполнительный орган или другие нейроны. Функционально нейроны объединены в нейрональные комплексы.

Принята классификация нейронов по количеству отростков и по форме тела.

Различают униполярные нейроны, имеющие один отросток (нейроны сетчатки глаза и обонятельных луковиц); биполярные нейроны – имеющие аксон и дендрит, располагающиеся на противоположных полюсах тела клетки (чувствительные нейроны). К этому же типу относят псевдоуниполярные нервные клетки, у которых аксон и дендрит начинаются с одного отростка, разделяясь на два после выхода его из нейрона (нейроны межпозвонковых ганглиев). Мультиполярные нейроны имеют один аксон и больше одного дендрита (по преимуществу это двигательные и ассоциативные нейроны).

Величина тела нейрона варьирует от 10 до 150 мкм. По форме тела различают овальные, веретенообразные, грушевидные, треугольные, многоугольные нейроны.

По функциональной принадлежности нейроны делят на чувствительные, двигательные и ассоциативные.

По виду медиаторного обмена различают нейроны холинергические (вещество-нейромедиатор – ацетилхолин), адренергические (адреналин, дофамин, серотонин), ГАМК-ергиче

Органоиды. Тело нервной клетки имеет ядро с одним или несколькими ядрышками; ядро окружено пористой оболочкой для осуществления обменных процессов между ним и цитоплазмой.

В цитоплазме находится гранулярная эндоплазматическая сеть, на мембранах которой расположены рибосомы и полисомы, тесно связанные с функциями и процессами метаболизма нейрона.

Агранулярная эндоплазматическая сеть ответственна за межнейронные трофические взаимодействия.

Аппарат Гольджи (мультивезикулярные тела, пузырьки, микротрубочки, нейрофиламенты) играет важную роль в транспорте веществ внутри клетки и по ее отросткам.

Митохондрии участвуют в энергетическом обмене.

Нервные волокна. Дендриты нервных клеток, как правило, короткие, разветвленные. В местах разветвления дендритов располагаются узлы ветвления, влияющие на проведение нервного импульса. Характерной особенностью дендритов также является наличие шипиков, которые представляют собой часть синапса. Их количество, распределение, форма зависят от функции нейрона и могут меняться как в сторону дегенерации, так и в сторону появления новых шипиков.

Аксон нейрона достигает 1 м в длину, хорошо миелинизирован. В отличие от дендритов, имеющих относительно однородное строение, отдельные части аксона значительно различаются по ультраструктурной картине и функциональной принадлежности. В части аксона, прилегающей к телу нейрона, располагается генератор нервного импульса – так называемый аксонный холмик. Следующая за ним проксимальная (начальная) часть аксона, еще не покрытая миелином, содержит аксо-аксональные синапсы, оказывающие большое влияние на функциональную активность нейрона. Последующая часть аксона имеет относительно однородное строение и содержит ультраструктуры, участвующие в передаче нервных импульсов путем аксонального транспорта различных веществ в обоих направлениях.

Межнейронные контакты и нейроэффекторные взаимодействия обеспечивают функционирование нервной системы как целого.

Межнейронные контакты делят на неспециализированные (плотные и щелевые) и специализированные (химические и электротонические синапсы).

Плотный контакт образуется телами нейронов и служит барьером для проникновения высокомолекулярных соединений.

Количество синапсов в различных отделах нервной системы значительно варьирует. Так, на гранулярных клетках коры мозжечка они практически отсутствуют, а на поверхности двигательных нейронов спинного мозга занимают 40–70 % площади и 10 % – на теле пирамидных клеток.

Различают основные типы синапсов: аксо-дендритические, аксо-соматические, аксо-аксональные, дендро-соматические, сомато-соматические и соматодендритические.

Наиболее характерны для нервной системы аксо-аксональные контакты, которые встречаются во многих отделах головного и спинного мозга. Аксоаксональные контакты играют важную регулирующую роль в функционировании нейронов.

Разновидность синаптических контактов составляют контакты нервного волокна с мышцей и секреторными элементами. При этом первые обеспечивают двигательную активность, вторые – секрецию нейрогормонов.

Глиальные клетки в нервной системе представлены астроцитами, олигодендроцитами, клетками микроглии и эпендимы.

Астроциты в виде фиброзных и протоплазматических клеток заполняют пространство между нейронами серого и проводниками белого вещества головного и спинного мозга. Астроциты играют роль электрического изолятора для тел нейронов и их отростков, а также несут опорно-механическую функцию.

Олигодендроциты располагаются также в сером и белом веществе мозга, обеспечивая миелинизацию аксонов.

Клетки микроглии принимают активное участие в фагоцитозе и в формировании фиброзных астроцитов. Клетки эпендимы выстилают полости мозговых желудочков и центрального канала спинного мозга, участвуют в образовании спинномозговой жидкости.

Таким образом, клетки глии обеспечивают механическую опору для нейронов, изоляцию нейронов и их отростков от неадекватного распространения возбуждения по нейрональным цепям, выступают в роли регулятора синаптических передач, выполняют трофическую функцию, что в конечном итоге обеспечивает нормальное функционирование нервной системы.

Гематоэнцефалический барьер имеет важное значение для сохранения оптимального ионного и осмотического баланса нервной системы. Гематоэнцефалический барьер образован эндотелием кровеносных капилляров мозга. Известно, что плотные контакты между эндотелиальными клетками служат барьером для молекул размером больше 1,5 нм, к которым относится большинство молекул белков. При патологических состояниях проницаемость гематоэнцефалического барьера может увеличиваться, что позволяет проникать в нервную систему веществам, приводящим к нарушению ее гомеостаза и развитию целого ряда патологических состояний мозга (отек, набухание, аутоиммунные процессы и др.).

Проницаемость гематоэнцефалического барьера отличается в разных отделах нервной системы; наиболее высока она в сером веществе головного мозга, что и отражается на клинической картине при ряде патологических состояний.

Практически непроницаем гематоэнцефалический барьер в области гипофиза, эпифиза, гипоталамуса, на клетках периневрия периферических нервов, что необходимо учитывать при проведении терапии различных патологических состояний этих областей лекарственными препаратами высокомолекулярных соединений.


| |

Раздражимость. Нейроны, как и все живые клетки, обладают раздражимостью - способностью под влиянием факторов внешней и внутренней среды, так называемых раздражителей, переходить из состояния покоя в состояние активности. Естественным раздражителем нейрона, вызывающим его деятельность, является нервный импульс, поступающий или из других нейронов, или из рецепторов - клеток, специализированных для восприятия физических, физико-химических и химических сигналов внешней и внутренней среды.
Возбудимость.
Важнейшим свойством нервных клеток, так же как и мышечных, является возбудимость - способность быстро ответить на действие раздражителя возбуждением. Мерой возбудимости является порог раздражения - та минимальная сила раздражителя, которая вызывает возбуждение. Возбуждение характеризуется комплексом функциональных, химических, физико-химических явлений. Оно способно перемещаться из одного места клетки в другое, от одной клетки к другой. Обязательным признаком возбуждения является изменение электрического состояния поверхностной клеточной мембраны. Именно электрические явления обеспечивают проведение возбуждения в возбудимых тканях.
Возникновение и распространение возбуждения связано с изменением электрического заряда живой ткани, с так называемыми биоэлектрическими явлениями. Если возбудимую клетку подвергнуть действию достаточно сильного раздражителя, то возникает быстрое колебание мембранного потенциала (разность потенциалов, регистрируемая по обе стороны мембраны), называемое потенциалом действия. Причина возникновения потенциала действия- изменение ионной проницаемости мембраны.
Проведение возбуждения.
Возникшее возбуждение распространяется по нервному волокну, переходит на другие клетки или на другие участки той же клетки за счет местных токов, возникающих между возбужденным и покоящимся участком волокна. Проведение возбуждения обусловлено тем, что потенциал действия, возникший в одной клетке или в одном из ее участков, становится раздражителем, вызывающим возбуждение соседних участков.
Передача возбуждения в синапсах.
Возбуждение от одной нервной клетки к другой передается только в одном направлении: с аксона одного нейрона на тело клетки и дендриты другого нейрона.

Аксоны большинства нейронов, подходя к другим нервным клеткам, ветвятся и образуют многочисленные окончания на телах этих клеток и их дендритах (рис. 4). Такие места контактов называют синапсами. Аксоны образуют окончания и на мышечных волокнах, и на клетках желез.
Количество синапсов на теле одного нейрона достигает 100 и больше, а на дендритах одного нейрона - несколько тысяч. Одно нервное волокно может образовать до 10 тыс. синапсов на многих нервных клетках.



Синапс имеет сложное строение (рис. 5). Он образован двумя мембранами - пресинаптической и постсинаптической, между ними синоптическая щель. Пресинаптическая часть синапса находится на нервном окончании. Нервные окончания в центральной нервной системе имеют вид пуговок, колечек или бляшек. Каждая синаптическая пуговка покрыта пресинаптической мембраной. Постсинаптическая мембрана находится на теле или на дендритах нейрона, к которому передается нервный импульс. В пресинаптической области обычно наблюдаются большие скопления митохондрий.
Возбуждение через синапсы передается химическим путем с помощью особого вещества - посредника, или медиатора, находящегося в синаптических пузырьках, расположенных в синапти-ческой бляшке. В разных синапсах вырабатываются разные медиаторы. Чаще всего это ацетилхолин, адреналин и норадреналин.
В центральной нервной системе наряду с возбудительными существуют тормозные синапсы, из синаптических бляшек которых освобождается тормозный медиатор. В настоящее время в ЦНС обнаружено два таких медиатора - гамма-аминомасляная кислота и глицин.
На каждой нервной клетке расположено множество возбуждающих и тормозных синапсов, что создает условия для их взаимодействия и в конечном счете для различного характера ответа на пришедший сигнал.
Синаптический аппарат в ЦНС, особенно в ее высших отделах, формируется в течение длительного периода постнатального развития. Его формирование в большей мере определяется притоком внешней информации. На ранних этапах развития первыми созревают возбудительные синапсы, тормозные синапсы формируются позже. С их созреванием связано усложнение процессов переработки информации.

Каждый орган или система в организме человека играют свою роль. При этом все они взаимосвязаны. Значение трудно переоценить. Она отвечает за корреляцию между всеми органами и их системами и за функционирование организма в целом. В школе рано начинают ознакомление с таким многогранным понятием, как нервная система. 4 класс - это еще маленькие дети, которые не могут глубоко разобраться во многих сложных научных понятиях.

Структурные единицы

Главные структурные и функциональные единицы нервной системы (НС) - нейроны. Они представляют собой сложные возбудимые секретирующие клетки с отростками и воспринимают нервное возбуждение, перерабатывают его и передают другим клеткам. Нейроны также могут оказывать на клетки-мишени модулирующее или тормозное воздействие. Они являются составной частью био- и хеморегуляции организма. С функциональной точки зрения нейроны являются одной из основ организации нервной системы. Они объединяют несколько других уровней (молекулярный, субклеточный, синаптический, надклеточный).

Нейроны состоят из тела (сома), длинного отростка (аксона) и небольших ветвящихся отростков (дендритов). В разных отделах нервной системы они имеют различную форму и величину. В некоторых из них длина аксона может достигать 1,5 м. От одного нейрона отходит до 1000 дендритов. По ним возбуждение распространяется от рецепторов к телу клетки. По аксону импульсы передаются эффекторным клеткам или другим нейронам.

В науке существует понятие «синапс». Аксоны нейронов, подходя к другим клеткам, начинают ветвиться и образуют многочисленные окончания на них. Такие места и называют синапсами. Аксоны образуют их не только на нервных клетках. Синапсы есть на мышечных волокнах. Эти органы нервной системы присутствуют даже на клетках желез внутренней секреции и кровеносных капиллярах. представляют собой покрытые глиальными оболочками отростки нейронов. Они выполняют проводящую функцию.

Нервные окончания

Это специализированные образования, расположенные на кончиках отростков нервных волокон. Они обеспечивают в виде импульса. Нервные окончания участвуют в формировании передающих и воспринимающих концевых аппаратов разной структурной организации. По функциональному назначению выделяют:

Синапсы, которые передают нервный импульс между нервными клетками;

Рецепторы (афферентные окончания), направляющие информацию от места действия фактора внутренней или внешней среды;

Эффекторы, передающие импульс от нервных клеток к другим тканям.

Деятельность нервной системы

Нервная система (НС) - целостная совокупность нескольких взаимосвязанных между собой структур. Она способствует слаженной регуляции деятельности всех органов и обеспечивает реакцию на изменения условий. Нервная система человека, фото которой представлено в статье, связывает воедино двигательную активность, чувствительность и работу иных регуляторных систем (иммунной, эндокринной). Деятельность НС связана с:

Анатомическим проникновением во все органы и ткани;

Установлением и оптимизацией взаимосвязи между организмом и окружающей внешней средой (экологической, социальной);

Координированием всех обменных процессов;

Управлением системами органов.

Структура

Анатомия нервной системы очень сложна. В ней находится много структур, различных по строению и назначению. Нервная система, фото которой свидетельствуют о ее проникновении во все органы и ткани организма, играет важную роль как приемник внутренних и внешних раздражителей. Для этого предназначены особые сенсорные структуры, которые находятся в так называемых анализаторах. Они включают специальные нервные устройства, которые способны воспринимать поступающую информацию. К ним относятся следующие:

Проприорецепторы, собирающие информацию, касающуюся состояния мышц, фасций, суставов, костей;

Экстерорецепторы, располагающиеся в кожных покровах, слизистых оболочках и органах чувств, способные воспринимать полученные из внешней среды раздражающие факторы;

Интерорецепторы, расположенные во внутренних органах и тканях и ответственные за принятие биохимических изменений.

Основное значение нервной системы

Работа НС тесно связана как с окружающим миром, так и с функционированием самого организма. С ее помощью происходит восприятие информации и ее анализ. Благодаря ей происходит распознавание раздражителей внутренних органов и поступающих извне сигналов. Нервная система отвечает за реакции организма на полученную информацию. Именно благодаря ее взаимодействию с гуморальными механизмами регуляции обеспечивается приспособляемость человека к окружающему миру.

Значение нервной системы состоит в обеспечении координации отдельных частей организма и поддержании его гомеостаза (равновесного состояния). Благодаря ее работе происходит приспособление организма к любым изменениям, называемое адаптивным поведением (состоянием).

Базовые функции НС

Функции нервной системы довольно многочисленны. К основным из них относятся следующие:

Регуляция жизнедеятельности тканей, органов и их систем в нормальном режиме;

Объединение (интеграция) организма;

Сохранение взаимосвязи человека с окружающей средой;

Контроль над состоянием отдельных органов и организма в целом;

Обеспечение активации и поддержания тонуса (рабочего состояния);

Определение деятельности людей и их психического здоровья, являющихся основой социальной жизни.

Нервная система человека, фото которой представлено выше, обеспечивает такие мыслительные процессы:

Восприятие, усвоение и переработку информации;

Анализ и синтез;

Формирование мотивации;

Сравнение с имеющимся опытом;

Постановку цели и планирование;

Коррекцию действия (исправление ошибок);

Оценивание результатов деятельности;

Формирование суждений, выводов и заключений, общих (абстрактных) понятий.

Нервная система помимо сигнальной выполняет еще и Благодаря ей выделяемые организмом биологически активные вещества обеспечивают жизнедеятельность иннервируемых органов. Органы, которые лишены такой подпитки, со временем атрофируются и отмирают. Функции нервной системы очень важны для человека. При изменениях существующих условий окружающей среды с их помощью происходит приспособление организма к новым обстоятельствам.

Процессы, происходящие в НС

Нервная система человека, схема которой довольно проста и понятна, отвечает за взаимодействие организма и окружающей среды. Для его обеспечения осуществляются такие процессы:

Трансдукция, представляющая собой превращение раздражения в нервное возбуждение;

Трансформация, в ходе которой происходит преобразование входящего возбуждения с одними характеристиками в выходящий поток с другими свойствами;

Распределение возбуждения по разным направлениям;

Моделирование, представляющее собой построение образа раздражения, заменяющего сам его источник;

Модуляция, изменяющая нервную систему или ее деятельность.

Значение нервной системы человека также состоит во взаимодействии организма с внешней средой. При этом возникают различные ответные реакции на любые виды раздражителей. Основные виды модуляции:

Возбуждение (активация), заключающаяся в повышении активности нервной структуры (это состояние является доминантным);

Торможение, угнетение (ингибиция), состоящее в снижении активности нервной структуры;

Временная нервная связь, представляющая собой создание новых путей передачи возбуждения;

Пластическая перестройка, которая представлена сенситизацией (улучшением передачи возбуждения) и габитуацией (ухудшением передачи);

Активация органа, обеспечивающего рефлекторную реакцию организма человека.

Задачи НС

Основные задачи нервной системы:

Рецепция - улавливание изменений во внутренней или внешней среде. Она осуществляется сенсорными системами при помощи рецепторов и представляет собой восприятие механических, термических, химических, электромагнитных и других видов раздражителей.

Трансдукция - преобразование (кодирование) поступившего сигнала в нервное возбуждение, представляющее собой поток импульсов с характеристиками, свойственными раздражению.

Осуществление проведения, заключающееся в доставке возбуждения по нервным путям в необходимые участки НС и к эффекторам (исполнительным органам).

Перцепция - создание нервной модели раздражения (построение его сенсорного образа). Этот процесс формирует субъективную картину мира.

Трансформация - преобразование возбуждения из сенсорного в эффекторное. Его целью является осуществление ответной реакции организма на произошедшее изменение среды. При этом происходит передача нисходящего возбуждения из высших отделов ЦНС к нижерасположенным или в ПНС (рабочим органам, тканям).

Оценка результата деятельности НС при помощи обратных связей и афферентации (передачи сенсорной информации).

Строение НС

Нервная система человека, схема которой представлена выше, подразделяется в структурном и функциональном отношении. Работу НС невозможно понять в полной мере, не разобравшись в функциях ее основных видов. Только изучив их назначение, можно осознать сложность всего механизма. Нервная система подразделяется на:

Центральную (ЦНС), которая осуществляет реакции различного уровня сложности, называемые рефлексами. Она воспринимает раздражители, получаемые из внешней среды и от органов. К ней относят головной и спинной мозг.

Периферическую (ПНС), соединяющую ЦНС с органами и конечностями. Ее нейроны находятся далеко от головного и спинного мозга. Она не защищена костями, поэтому подвержена механическим повреждениям. Только благодаря нормальному функционированию ПНС возможна человека. Эта система ответственна за реагирование организма на опасность и стрессовые ситуации. Благодаря ей в подобных ситуациях учащается пульс и повышается уровень адреналина. Заболевания сказываются на работе ЦНС.

ПНС состоит из пучков нервных волокон. Они выходят далеко за пределы спинного и головного мозга и направляются к разным органам. Их называют нервами. К ПНС относятся Они являются скоплением нервных клеток.

Заболевания периферической нервной системы разделяются по таким принципам: топографическо-анатомическому, этиологическому, патогенезу, патоморфологии. К ним относятся:

Радикулиты;

Плекситы;

Фуникулиты;

Моно-, поли- и мультиневриты.

По этиологии заболеваний они делятся на инфекционные (микробные, вирусные), токсические, аллергические, дисциркуляторные, дисметаболические, травматические, наследственные, идиопатические, компрессийно-ишемические, вертеброгенные. Заболевания ПНС могут быть первичными (проказа, лептоспироз, сифилис) и вторичными (после детских инфекций, мононуклеоза, при узелковом периартериите). По патоморфологии и патогенезу они делятся на невропатии (радикулопатии), невриты (радикулиты) и невралгии.

Рефлекторная деятельность в значительной степени определяется которые представляют собой совокупность структур ЦНС. Их скоординированная деятельность обеспечивает регуляцию различных функций организма или рефлекторные акты. Нервные центры имеют несколько общих свойств, определяемых структурой и функцией синаптических образований (контакт между нейронами и другими тканями):

Односторонность процесса возбуждения. Он распространяется по в одном направлении.

Иррадиация возбуждения, заключающаяся в том, что при значительном увеличении силы раздражителя происходит расширение области вовлекаемых в этот процесс нейронов.

Суммация возбуждения. Этот процесс облегчается наличием огромного множества синаптических контактов.

Высокая утомляемость. При длительном повторном раздражении происходит ослабление рефлекторной реакции.

Синаптическая задержка. Время рефлекторной реакции полностью зависит от скорости движения и времени распространения возбуждения через синапс. У человека одна такая задержка составляет около 1 мс.

Тонус, который представляет собой наличие фоновой активности.

Пластичность, являющаяся функциональной возможностью существенно модифицировать общую картину рефлекторных реакций.

Конвергенция нервных сигналов, определяющая физиологический механизм пути прохождения афферентной информации (постоянного потока нервных импульсов).

Интеграция функций клеток в нервных центрах.

Свойство доминантного нервного очага, характеризующегося повышенной возбудимостью, способностью к возбуждению и суммированию.

Цефализация нервной системы, заключающаяся в перемещении, координации деятельности организма в главных отделах ЦНС и сосредоточении в них функции регуляции.

Нейрон – высокоспециализированная клетка, приспособленная для приема, обработки, интеграции, хранения и передачи информации. Нейрон состоит из тела и отростков двух типов: коротких ветвящихся дендритов и длинного отростка – аксона.

Имея принципиально общее строение, нейроны сильно различаются размерами, формой, числом, ветвлением, расположением дендритов, длиной и разветвленностью аксона. Выделяют два основных вида нейронов:

1. пирамидные – крупные нейроны разного размера, на которых сходятся импульсы от разных источников. Делятся на два типа:

а) афферентные;

б) эфферентные.

2. вставочные (интернейроны) – меньше по размерам, разнообразны по пространственному расположению отростков:

а) веретенообразные;

б) звездчатые;

в) корзинчатые.


Сигналы (нервные импульсы ) от органов и тканей тела человека и из внешней среды, воздействующей на поверхность тела и органы чувств, поступают по нервам в спинной и головной мозг. Там происходят сложные процессы обработки поступившей информации. В результате, из мозга также по нервам к органам и тканям идут ответные сигналы, вызывающие ответную реакцию организма, которая проявляется в мышечной и секреторной деятельности.


Рис. 12. Функционирование нервной системы

В нервной системе нервные клетки, образуя контакты(синапсы )с другими нервными клетками, складываются в цепи нейронов . По ним нервные импульсы проводятся от органов и тканей, где эти импульсы возникают в нервных окончаниях, в центры нервной системы – в мозг. Из мозга к рабочим органам (мышцам, железам и др.) нервные импульсы также следуют по цепям нейронов.

Рефлекс – (от лат. reflexus – отражение, ответная реакция) – ответная реакция организма на воздействия внешней среды или изменения его внутреннего состояния, выполняемая с участием нервной системы.

Рефлекторная дуга – путь, состоящий из цепей нейронов, по которому нервный импульс проходит от чувствительных нервных клеток до рабочего органа.

Вся деятельность нервной системы строится на основе рефлекторных дуг, которые могут быть:

1. простыми – состоит из трех нейронов;

2. сложными – состоят из многих нейронов (несколько вставочных).

У каждой рефлекторной дуги можно выделить:

1. первый нейрон – чувствительный или приносящий – воспринимает воздействия, образует нервный импульс и приносит его в мозг (центральную нервную систему);

2. последний нейрон – эфферентный или эффекторный – выносит нервный импульс из мозга к рабочему органу, включает этот орган в работу, вызывает эффект действия;

3. промежуточный нейрон (один или несколько) – вставочный или проводниковый – проводят нервные импульсы от приносящего, чувствительного нейрона к последнему, выносящему, эфферентному нейрону.



© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары