Вконтакте Facebook Twitter Лента RSS

Азотсодержащие органические соединения белки. Взаимодействие с водой

Двойная связь алкенов чаще всего образуется в результате реакций отщепления. Галогеналканы отщепляют галогеноводороды под действием сильных оснований. Спирты отщепляют воду либо при высокой температуре, либо под действием реагентов, связывающих воду.

Дегидрогалогенирование

В этих реакциях происходит удаление атомов водорода и галогена, присоединенных к соседним атомам углерода, под действием сильноосновных реагентов, таких, как раствор гидроксида калия в спирте:

Например:

Если при отщеплении галогеноводорода может образоваться несколько различных алкенов, как в приведенном выше примере, преимущественно образуется тот, в котором при двойной связи имеется больше алкильных заместителей (см. гл. 5).

Дегидратация

Термин дегидратация означает потерю соединением молекулы воды. Спирты отщепляют воду при нагревании под действием кислых катализаторов, таких, как серная и фосфорная кислоты:

При этом образуется алкен, имеющий температуру кипения значительно более низкую, чем исходный спирт, что позволяет легко выделять алкен перегонкой. Температуру реакционной смеси поддерживают выше точки кипения образующегося алкена, но ниже точки кипения исходного спирта. При этом алкен по мере образования отгоняется. Например, циклогексанол имеет температуру кипения а образующийся из него циклогексен кипит при Если вести реакцию дегидратации при алкен будет отгоняться из реакционной смеси, а спирт - нет:

Другие примеры:

Как и дегидрогалогенирование галогеналканов, дегидратация спиртов может в некоторых случаях приводить к смеси алкенов. Более подробно об этом и деталях механизма реакции мы поговорим в гл. 7.

Получение алкенов из алкинов

Кроме описанных выше реакций отщепления, для синтеза алкенов можно использовать присоединение одного моля водорода к алкинам. Для получения цис-алкена в качестве катализатора используют дезактивированный хинолином палладий на сульфате бария. Хинолин имеет следующее строение:

транс-Алкены получают восстановлением алкинов литием в жидком аммиаке:

Ниже приводится два конкретных примера:

Следует понимать, что приставки цис- и транс- могут относиться к геометрии молекулы, а могут использоваться для описания характера какого-либо процесса.

Термины цис-присоединение (иногда говорят син-присоединение) и транс-присоединение (яяги-присоединение) означают, что присоединяющиеся атомы или группы подходят с одной или соответственно с разных сторон связи или молекулы. В гл. 3 мы использовали эти понятия, обсуждая превращение алкенов в алканы. Здесь речь идет о получении алкенов из алкинов, но смысл терминов от этого не меняется.

Апкены получают дегидрогалогенированием галогеналканов, дегидратацией спиртов или присоединением водорода по тройной связи алкинов. В последнем случае, выбирая подходящий реагент, можно получать алкены с заданной стереохимией двойной связи.


3. Получение алкенов

Среди большого числа методов получения алкенов необходимо выделить три наиболее общих способа создания двойной углерод-углеродной связи. Один из них основан на элиминировании двух групп от вицинальных (соседних) атомов углерода насыщенного соединения. Другой способ синтеза алкенов заключается в стереоселективном или стереоспецифическом восстановлении тройной углерод-углеродной связи в алкинах до двойной связи цис- или транс -конфигурации. Третий способ создания двойной углерод-углеродной связи основан на многочисленных реакциях карбонил-метиленовой конденсации карбонильных соединений с соединениями с "активной метиленовой группой". В данной методической разработке приводится только краткая сводка основных методов синтеза алкенов.

1.Дегидрогалогенирование алкилгалогенидов

Например:

2.Дегидратация спиртов

Например:

3.Дегалогенирование вицинальных дигалогенидов

Например:

4.Термическое разложение гидроксидов тетраалкиламмония по А. Гофману

Например:

5.Дегидрирование алканов

Например:

Эта реакция имеет практическое значение только для промышленного получения низших алкенов: этилена из этана, пропилена из пропана, бутенов из н -бутана, а также из газообразных продуктов термического крекинга.

6.Стереоселективное восстановление алкинов до цис - и транс -алкенов

*Катализатор Линдлара - это палладий, адсорбированный на нейтральном носителе BaSO 4 или CaCO 3 , дезактивированный хинолином

Например:

*Катализатор P-2-Ni - это Ni(OAc) 2 ; NaBH 4 ; C 2 H 5 OH; NH 2 CH 2 CH 2 NH 2 , коллоидный никель, полученный восстановлением диацетата никеля боргидридом натрия в ситеме этанол-этилендиамин. Этилендиамин препятствует дальнейшему гидрированию двойной связи

Например:

Например:

7.Моногидроборирование алкинов с последующим разложением образующихся винилборанов уксусной кислотой (подробно об этом двухстадийном методе восстановления алкинов до алкенов можно прочитать в разделе

Спирты распространены в природе. Большинство людей знакомы с этиловым спиртом (этанолом) - активным ингредиентом алкогольных напитков, но он является лишь одним из семейства органических соединений, известных как спирты. Получение их, прежде всего этилового (винного в результате ферментативного брожения виноградного сока стало одним из первых химических техпроцессов, освоенных человечеством.

Номенклатура спиртов

Спирты представляет собой органические соединения гидроксильной (ОН) функциональной группы с алифатическим атомом углерода. Поскольку ОН является принадлежностью молекул всех спиртов, их часто представляют как производными воды с общей формулой ROH, где R обозначает алкильную группу.

Получение спиртов метанола (СН 3 ОН) и этанола (СН 3 СН 2 ОН), являющихся первыми двумя членами их гомологического ряда, является важной задачей химической промышленности многих стран. При содержании от одного до четырех атомов углерода их часто называют общими именами, в которых за названием алкильной группы следует слово спирт:

Можно видеть, что все четыре (две последние являются изомерами одного вещества) представленные выше молекулы спиртов содержат одну гидроксильную группу. По этому признаку все они относятся к классу одноатомных спиртов (бывают и двух-, трех, четырех- и многоатомные). Кроме того, все они являются производными предельных углеводородов из ряда алканов: метана, этана, пропана (названия спиртов получают добавлением к названию алкена окончания «-ол»). Поэтому их еще называют предельными одноатомными спиртами.

Одноатомные спирты

Получение, свойства (как физические, так и химические) этих соединений зависят от количества атомов углерода, присоединенных к его же атому, непосредственно связанному с группой ОН. Поэтому одноатомные спирты могут быть сгруппированы в три класса на этой основе.




Получение одноатомных спиртов в промышленности возможно целым рядом способов, которые будут рассмотрены ниже.

Метанол как продукт природного газа

Метанол получают смешиванием газа водорода и монооксида углерода при высоких температурах и давлениях (200 ат, 350 ° C)в присутствии катализатора, состоящего из оксида цинка (ZnO) и оксида хрома (Cr 2 O 3) в качестве катализатора: 2H 2 + CO → CH 3 OH.

При этом сырьем для получения реагентов являются природный газ и водяной пар, смешивая которые, получают синтез - газ, представляющий собой смесь CO и H 2 .

Метанол является важным растворителем и используется в качестве автомобильного топлива, либо в виде чистой жидкости - в некоторых гоночных автомобилях, либо в качестве высокооктановой добавки в бензин. Получение и применение спиртов в мире, и в частности метанола, измеряется миллионами тонн. По итогам 2013 г. в мире было потреблено 66 млн т метанола, из них 65 % в Азии, 17 % - в Европе и 11 % - в США.

Получение предельных спиртов из алкенов

Многие простые весовые спирты, имеющие промышленное значение, производятся гидратацией (добавлением воды) алкенов (этилена, пропилена, бутена). Этанол, изопропанол, бутанол (вторичный и третичный) получают по этой реакции.

Известны прямой и косвенный способы получения спиртов гидратацией. Прямой позволяет избежать образования стабильных промежуточных продуктов, как правило, с помощью кислых катализаторов.

Катализатором обычно является фосфорная кислота, адсорбированная на пористом носителе, таком как силикагель или кизельгур. Этот катализатор был впервые использован для крупномасштабного производства этанола в США компанией "Шелл" в 1947 году. Реакцию проводят в присутствии пара высокого давления при 300 °C, причем между этиленом и паром поддерживается соотношение 1,0: 0,6.

Аналогичная реакция производства изопропилового спирта с катализаторов в виде серной кислоты выглядит следующим образом

Косвенный способ гидратации этилена

В косвенным способе, на практике впервые примененном в промышленном масштабе в 1930 году, но сегодня считающимся почти полностью устаревшим, реакция получения спиртов заключается в превращении алкена в сульфат эфиры, который затем гидролизуют. Традиционно алкен обрабатывают серной кислотой с получением алкильные сульфатных эфиров. В случае производства этанола, этот шаг может быть записан так: Н 2 SO 4 + С 2 Н 4 → C 2 H 5 -O-SO 3 H

Впоследствии этот сульфат эфира гидролизуют до регенерации серной кислоты и освобождения этанола: С 2 Н 5 -O-SO 3 H + H 2 O → H 2 SO 4 + С 2 Н 5 ОН.

Способы получения спиртов чрезвычайно разнообразны, но нижеописанный процесс, пожалуй, известен, хотя бы понаслышке каждому читателю.

Спиртовое брожение

Это биологический процесс, в котором молекулы, такие как глюкоза, фруктоза и сахароза, преобразуются в клеточную энергию с параллельным производством этанола и углекислого газа в качестве продуктов метаболизма. Брожение катализируется ферментами, содержащимися в дрожжах и протекает по сложному многоступенчатому механизму, которое включает в общем случае преобразование (на первом этапе) крахмала, содержащегося в растительных зернах, в глюкозу с последующим получением из нее этанола. Поскольку дрожжи выполняют это преобразование в отсутствие кислорода, спиртовое брожение считается анаэробным процессом.

Реакции получения спиртов брожением можно представить следующим образом:

Способы получения алкогольных напитков

Весь этанол, содержащийся в алкогольных напитках производится посредством ферментации, вызванной дрожжами.

Вино производится путем ферментации из натуральных сахаров, присутствующих в винограде; сидр получают аналогичной ферментацией природного сахара в яблоках и грушах, соответственно; и другие фруктовые вина производятся ферментацией сахаров в любых других видах фруктов. Бренди и коньячные спирты (например, сливовица) производятся при перегонке напитков, получаемых брожением фруктовых сахаров.

Медовые напитки производятся путем ферментации из натуральных сахаров, присутствующих в меде.

Пиво, виски, и водка производятся путем ферментации зерен крахмала, которые преобразуются в сахар под действием фермента амилазы, присутствующей в зерновых ядрах, подвергшихся солодовому проращиванию. Другие источники крахмала (например, картофель и не солодовое зерно) могут быть добавлены к смеси, так как амилаза будет действовать также и на их крахмал.

Рисовые вина (в том числе саке) получают путем брожения зерновых крахмалов, превращаемых в сахар грибками Aspergillus огугае.

Ром и некоторые другие напитки получают ферментацией и дистилляцией сахарного тростника. Ром, как правило, производится из продукта сахарного тростника - патоки.

Во всех случаях брожение должно происходить в сосуде, который позволяет двуокиси углерода выходить, но предотвращает приход наружного воздуха. Это нужно потому, что воздействие кислорода предотвращает образование этанола, а накопление диоксида углерода создает риск разрыва сосуда.

Реакция нуклеофильного замещения

Получение спиртов в лабораториях производится способами, которые используют в качестве исходных продуктов для реакций химические вещества самых разнообразных классов, от углеводородов до карбонильных соединений. Существует несколько способов, которые сводятся к нескольким основным реакциям.

Первичные галогеналканы реагируют с водными растворами щелочей NaOH или КОН, образуя, образуя, главным образом, первичные спирты в реакции нуклеофильного алифатического замещения. Когда, например, метилбромид реагирует с раствором едкого натра, то гидроксильные группы, образующинся при диссоциации щелочи, замещают ионы брома с образованием метанола.

Несколько реакций, позволяющих выполнять получение спиртов в лабораториях, приведены ниже.

Нуклеофильное присоединение.

Реактивы Гриньяра (соединения магния с алкилгалогенидами - иодидами или бромидами), а также металлоорганические соединения меди и лития реагируют с карбонильными группами (C=O) альдегидов с образованием первичных и вторичных спиртов в зависимости от механизма присоединения.Аналогичные реакции с кетонами приводят к третичным спиртам.

Реакция Барбье протекает между галогеналканом и карбонильной группой в качестве электрофильного субстрата в присутствии магния, алюминия, цинка, индия, олова или его солей. Продуктом реакции является первичный, вторичный или третичный спирт. Механизм ее протекания аналогичен реакции Гриньяра с той разницей, что реакция Барбье является синтезом в одном сосуде, тогда как реактив Гриньяра получают отдельно перед добавлением карбонильного соединения.

Являясь реакцией нуклеофильного присоединения, она происходит с относительно недорогими и водостойкими металлами или их соединениями в отличие от реагентов Гриньяра или органолитиевых реагентов. По этой причине возможно во многих случаях запускать ее в воде, что делает процесс частью зеленой химии. Реакция Барбье назван в честь Филиппа Барбье - учителя Виктора Гриньяра.

Реакция восстановления

Альдегиды или кетоны восстанавливаются до спиртов с боргидридом натрия (NaBH 4) или (после кислотной обработки) с литийалюминий гидридом (LiAlH).

В реакции Меервейна-Пондорфа-Верли (MPV) получение спиртов путем восстановления их из кетонов и альдегидов происходит с использованием алюминиевого алкоксидного катализатора. Достоинства MPV заключаются в ее высокой хемоселективности и использовании дешевого, экологически чистого металлического катализатора. Реакция была обнаружена Меервейном и Шмидтом, и независимо Верли в 1925 г. Они обнаружили, что смесь алюминиевого этоксида и этанола может восстановить альдегиды до их спиртов. Понндорф применил реакцию к кетонам и обновил катализатор до изопропилата алюминия (Al(O-i-Pr) 3 , где i-Pr означает изопропиловую группу (CH(CH 3) 2). в целях получения изопропанола.

Общее уравнение получения спирта путем MPV-восстановления кетонов до спиртов выглядит так:

Это, конечно, не все, что можно сказать относительно спиртов и их свойств, но общее представление о них, надеемся, вам составить удалось.

В органической химии можно встретить углеводородные вещества с разным количеством углерода в цепи и C=C-связью. Они являются гомологами и называются алкенами. Из-за своего строения они химически более активны, чем алканы. Но какие именно реакции для них характерны? Рассмотрим их распространение в природе, разные способы получения и применение.

Что из себя представляют?

Алкены, которые также называются олефинами (маслянистые) получили свое название от этен-хлорида, производного первого представителя этой группы. У всех алкенов есть хотя бы одна двойная C=C-связь. C n H 2n - формула всех олефинов, а название образовывается от алкана с таким же количеством углеродов в молекуле, только суффикс -ан меняется на -ен. Арабской цифрой в конце названия через дефис обозначают номер углерода, от которого начинается двойная связь. Рассмотрим основные алкены, таблица поможет вам запомнить их:

Если молекулы имеют простое неразветвленное строение, то добавляют суффикс -илен, это также отражено в таблице.

Где их можно встретить?

Так как реакционная способность алкенов весьма высока, их представители в природе встречаются крайне редко. Принцип жизни молекулы олефинов — "давай дружить". Нет вокруг других веществ — не беда, будем дружить между собой, образуя полимеры.

Но они есть, и небольшое количество представителей входит в состав сопутствующего нефтяного газа, а высших — в нефти, добываемой на территории Канады.

Самый первый представитель алкенов этен — это гормон, стимулирующий созревание плодов, поэтому его в небольших количествах синтезируют представители флоры. Есть алкен цис-9-трикозен, который у самок мухи домашней играет роль полового аттрактанта. Еще его называют мускалур. (Аттрактант — вещества природного или синтетического происхождения, которое вызывает влечение к источнику запаха у другого организма). С точки зрения химии, алкен этот выглядит так:

Так как весьма ценным сырьем являются все алкены, способы получения их искусственным путем весьма разнообразны. Рассмотрим наиболее распространенные.

А если нужно много?

В промышленности класс алкенов, в основном, получается при крекинге, т.е. расщеплении молекулы под воздействием высоких температур, высших алканов. Для реакции необходим нагрев в диапазоне от 400 до 700 °C. Расщепляется алкан так, как ему захочется, образуя алкены, способы получения которых мы рассматриваем, с большим количеством вариантов строения молекул:

C 7 H 16 -> CH 3 -CH=CH 2 + C 4 H 10.

Еще один распространенный способ называется дегидрирование, при котором от представителя ряда алкана в присутствии катализатора отделяют молекулу водорода.

В лабораторных условиях алкены и способы получения отличаются, они основаны на реакциях элиминирования (отщепления группы атомов без их замещения). Чаще всего элиминируются атомы воды из спиртов, галогены, водород или галогенводород. Наиболее распространенный способ получения алкенов — из спиртов в присутствии кислоты, как катализатора. Возможно использование и других катализаторов

Все реакции элиминирования подчинены правилу Зайцева, гласящему:

Атом водорода отщепляется от того углерода, соседствующего с углеродом, несущим группу -OH, у которого меньше водородов.

Применив правило, ответьте, какой продукт реакции будет преобладать? Позже вы узнаете, правильно ли ответили.

Химические свойства

Алкены активно реагируют с веществами, разрывая свою пи-связь (еще одно название связи C=C). Ведь она не такая прочная, как одинарная (сигма-связь). Углеводород из ненасыщенного превращается в насыщенный, не образуя других веществ после реакции (присоединение).

  • присоединение водорода (гидрирование). Присутствие катализатора и нагревания нужна для ее прохождения;
  • присоединение молекул галогенов (галогенирование). Является одной из качественных реакций на пи-связь. Ведь при реакции алкенов с бромной водой, она из бурой становится прозрачной;
  • реакция с галогенводородами (гидрогалогенирование);
  • присоединение воды (гидратация). Условиями прохождения реакции является нагревание и присутствие катализатора (кислоты);

Реакции несимметричных олефинов с галогенводородами и водой подчиняются правилу Марковникова. А значит, водород присоединится к тому углероду из двойной углерод-углеродной связи, у которого уже больше атомов водорода.

  • горение;
  • неполное окисление каталитическое. Продуктом являются циклические оксиды;
  • реакция Вагнера (окисление перманганатом в нейтральной среде). Эта реакция алкенов — еще одна качественная C=C-связь. При протекании розовый раствор марганцовки обесцвечивается. Если ту же реакцию провести в соединенной кислой среде, продукты будут уже другими (карбоновые кислоты, кетоны, углекислый газ);
  • изомеризация. Характерны все виды: цис- и транс-, перемещение двойной связи, циклизация, скелетная изомеризация;
  • полимеризация — главное свойство олефинов для промышленности.

Применение в медицине

Большое практическое значение имеют продукты реакции алкенов. Многие из них используются в медицине. Из пропена получают глицерин. Этот многоатомный спирт является прекрасным растворителем, причем, если его использовать вместо воды, растворы будут более концентрированными. В медицинских целях в нем растворяют алкалоиды, тимол, йод, бром и др. Также глицерин применяют при приготовлении мазей, паст и кремов. Он предотвращает их высыхание. Сам по себе глицерин является антисептиком.

При реакции с хлороводородом получаются производные, которые применяются как местная анестезия при нанесении на кожу, а также для кратковременного наркоза при незначительных хирургических вмешательствах, при помощи ингаляций.

Алкадиены — это алкены с двумя двойными связями в одной молекуле. Основное их применение — производство синтетического каучука, из которого потом изготавливают различные грелки и спринцовки, зонды и катетеры, перчатки, соски и многое другое, что просто незаменимо при уходе за больными.

Применение в промышленности

Вид промышленности Что применяют Каким образом могут использовать
Сельское хозяйство этен ускоряет созревание овощей и фруктов, дефолиация растений, пленки для теплиц
Лако-красочная этен, бутен, пропен и др. для получения растворителей, эфиров, сольвента
Машиностроение 2-метилпропен, этен производство синтетического каучука, смазочные масла, антифриз
Пищевая промышленность этен

производство тефлона, этилового спирт, уксусная кислота

Химическая промышленность этен, полипропилен получают спирты, полимеры (поливинилхлорид, полиэтилен, поливинилацетат, полиизобтилен, уксусный альдегид
Горная промышленность этен и др. взрывчатые вещества

Более широкое применение нашли алкены и их производные в промышленности. (Где и как используются алкены, таблица выше).

Это лишь малая часть использования алкенов и их производных. С каждым годом потребность в олефинах только возрастает, а значит, возрастает потребность и в их производстве.

© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары