Вконтакте Facebook Twitter Лента RSS

Алифатические карбоновые кислоты химические свойства. Одноосновные непредельные карбоновые кислоты

Урок поможет вам получить представление о теме «Химические свойства предельных одноосновных карбоновых кислот» (школьная программа по химии 10 класса). В ходе занятия вы узнаете про химические свойства предельных карбоновых кислот, которые обусловлены наличием в их молекуле карбоксиловой группы.

Тема: Карбонильные соединения. Карбоновые кислоты

Урок: Химические свойства предельных одноосновных карбоновых кислот

Из названия этих соединений можно предположить, что им характерны кислотные свойства.

Кислотные свойства

Кислотные свойства - способность к отщеплению иона водорода.

⇆ +H +

В чем проявляются кислотные свойства карбоновых кислот?

1. Наличие свободного иона водорода в растворах кислот обуславливает их кислый вкус и взаимодействие с индикаторами.


2. Кислоты взаимодействуют с активными металлами, выделяя водород:

2СН 3 СOOH + Mg →(СН 3 СOO) 2 Mg + H 2 .

этанат магния

(ацетат магния)

3. Реакции c основаниями:

СН 3 СOOH + NaOH → СН 3 СOONa + H 2 O.

4. Реакции с основными оксидами:

2СН 3 СOOH + ZnO → (СН 3 СOO) 2 Zn + H 2 O.

5. Реакции с солями более слабых кислот:

Электролит - вещество, диссоциирующее на ионы в растворе или расплаве.

Сильный электролит - электролит, диссоциирующий на ионы полностью.

Слабый электролит - электролит, диссоциирующий на ионы частично.

Карбоновые кислоты → слабые электролиты:

СН 3 СООН СН 3 СОО - + Н +

От чего зависит сила карбоновой кислоты?

1. От строения

Чем больше положительный заряд на атоме водорода в молекуле кислоты, тем более сильным электролитом она будет. Наличие электронодонорных углеводородных радикалов рядом с карбоксильной группой уменьшает способность кислоты диссоциировать.

2. От наличия других групп в молекуле

Введение электроноакцепторных заместителей увеличивает положительный заряд на атоме водорода и силу кислоты.

Нуклеофильное замещение (реакция этерификации)

Карбоновые кислоты взаимодействуют со спиртами в присутствии катализатора - серной кислоты, образуя сложные эфиры .

Декарбоксилирование - удаление карбоксильной группы.

1. При нагревании с твердыми щелочами соли карбоновых кислот дают алкан с числом атомов углерода на единицу меньше, а карбоксильная группа удаляется в виде карбоната:

RCOONa тв + NaOH тв RH + Na 2 CO 3 .

2. Твердые соли карбоновых кислот со щелочноземельными металлами при нагревании дают кетон и карбонат:

(СН 3 СОО) 2 Са СН 3 -СО-СН 3 + СаСО 3 .

3. Бензойная кислота при прокаливании разлагается на бензол и углекислый газ:

Ph-COOH PhH + CO 2 .

4. При электролизе водных растворов солей карбоновых кислот на аноде выделяется углекислый газ, а углеводородные радикалы объединяются в алкан (реакция Кольбе):

2RCOONa + Н 2 О → R-R + 2CO 2 + 2NaOH.

При электролизе без диафрагмы (с неразделенным катодным и анодным пространством) гидроксид натрия взаимодействует с углекислым газом, и одним из продуктов является гидрокарбонат:

2RCOONa + Н 2 О →R-R + 2NaHCO 3 .

Подведение итога урока

При помощи данного урока вы смогли самостоятельно изучить тему «Химические свойства предельных одноосновных карбоновых кислот» (школьная программа по химии 10 класса). В ходе занятия вы узнали химические свойства предельных карбоновых (органических) кислот, которые обусловлены наличием в их молекуле карбоксильной группы.

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень / Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2008. - 463 с.

3. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2010. - 462 с.

4. Хомченко Г.П., Хомченко И.Г. Сборник задач по химии для поступающих в вузы. - 4-е изд. - М.: РИА «Новая волна»: Издатель Умеренков, 2012. - 278 с.

Домашнее задание

1. №№ 2, 4 (с. 113) Рудзитис Г.Е., Фельдман Ф.Г. Химия: Органическая химия. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Какие две кислоты имеют общую молекулярную формулу С 4 Н 8 О 2. Назовите их.

3. Какая из кислот монохлоруксусная или уксусная должна быть сильнее? Почему?

Получение карбоновых кислот

I . В промышленности

1. Выделяют из природных продуктов

(жиров, восков, эфирных и растительных масел)

2. Окисление алканов:

2CH 4 + + 3O 2 t,kat → 2HCOOH + 2H 2 O

метанмуравьиная кислота

2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 t,kat,p →4CH 3 COOH + 2H 2 O

н-бутануксусная кислота

3. Окисление алкенов:

CH 2 =CH 2 + O 2 t,kat → CH 3 COOH

этилен

СH 3 -CH=CH 2 + 4[O] t,kat → CH 3 COOH + HCOOH (уксусная кислота+муравьиная кислота )

4. Окисление гомологов бензола (получение бензойной кислоты):

C 6 H 5 -C n H 2n+1 + 3n[O] KMnO4,H+ → C 6 H 5 -COOH + (n-1)CO 2 + nH 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 -COOH + 3K 2 SO 4 + 6MnSO 4 + 14H 2 O

толуолбензойная кислота

5.Получение муравьиной кислоты:

1 стадия: CO + NaOH t , p →HCOONa ( формиат натрия – соль )

2 стадия : HCOONa + H 2 SO 4 → HCOOH + NaHSO 4

6. Получение уксусной кислоты:

CH 3 OH + CO t,p →CH 3 COOH

Метанол

II . В лаборатории

1. Гидролиз сложных эфиров:

2. Из солей карбоновых кислот :

R-COONa + HCl → R-COOH + NaCl

3. Растворением ангидридов карбоновых кислот в воде:

(R-CO) 2 O + H 2 O → 2 R-COOH

4. Щелочной гидролиз галоген производных карбоновых кислот:

III . Общие способы получения карбоновых кислот

1. Окисление альдегидов:

R-COH + [O] → R-COOH

Например, реакция «Серебряного зеркала» или окисление гидроксидом меди (II ) – качественные реакции альдегидов

2. Окисление спиртов:

R-CH 2 -OH + 2[O] t,kat → R-COOH + H 2 O

3. Гидролиз галогензамещённых углеводородов, содержащих три атома галогена у одного атома углерода.

4. Из цианидов (нитрилов) – способ позволяет наращивать углеродную цепь:

СH 3 -Br + Na-C≡N → CH 3 -CN + NaBr

CH 3 -CN - метилцианид (нитрил уксусной кислоты)

СH 3 -CN + 2H 2 O t → CH 3 COONH 4

ацетат аммония

CH 3 COONH 4 + HCl → CH 3 COOH + NH 4 Cl

5. Использование реактива Гриньяра

R-MgBr + CO 2 →R-COO-MgBr H2O → R-COOH + Mg(OH)Br

ПРИМЕНЕНИЕ КАРБОНОВЫХ КИСЛОТ

Муравьиная кислота – в медицине - муравьиный спирт (1,25% спиртовой раствор муравьиной кислоты), в пчеловодстве, в органическом синтезе, при получении растворителей и консервантов; в качестве сильного восстановителя.

Уксусная кислота – в пищевой и химической промышленности (производство ацетилцеллюлозы, из которой получают ацетатное волокно, органическое стекло, киноплёнку; для синтеза красителей, медикаментов и сложных эфиров). В домашнем хозяйстве как вкусовое и консервирующее вещество.

Масляная кислота – для получения ароматизирующих добавок, пластификаторов и флотореагентов.

Щавелевая кислота – в металлургической промышленности (удаление окалины).

Стеариновая C 17 H 35 COOH и пальмитиновая кислота C 15 H 31 COOH – в качестве поверхностно-активных веществ, смазочных материалов в металлообработке.

Олеиновая кислота C 17 H 33 COOH – флотореагент и собиратель при обогащении руд цветных металлов.

Отдельные представители

одноосновных предельных карбоновых кислот

Муравьиная кислота впервые была выделена в XVII веке из красных лесных муравьев. Содержится также в соке жгучей крапивы. Безводная муравьиная кислота – бесцветная жидкость с острым запахом и жгучим вкусом, вызывающая ожоги на коже. Применяется в текстильной промышленности в качестве протравы при крашении тканей, для дубления кож, а также для различных синтезов.
Уксусная кислота широко распространена в природе – содержится в выделениях животных (моче, желчи, испражнениях), в растениях (в зеленых листьях). Образуется при брожении, гниении, скисании вина, пива, содержится в кислом молоке и сыре. Температура плавления безводной уксусной кислоты + 16,5°C, кристаллы ее прозрачны как лед, поэтому ее называют ледяной уксусной кислотой. Впервые получена в конце XVIII века русским ученым Т. Е. Ловицем. Натуральный уксус содержит около 5% уксусной кислоты. Из него приготовляют уксусную эссенцию, используемую в пищевой промышленности для консервирования овощей, грибов, рыбы. Уксусная кислота широко используется в химической промышленности для различных синтезов.

Представители ароматических и непредельных карбоновых кислот

Бензойная кислота C 6 H 5 COOH - наиболее важный представитель ароматических кислот. Распространена в природе в растительном мире: в бальзамах, ладане, эфирных маслах. В животных организмах она содержится в продуктах распада белковых веществ. Это кристаллическое вещество, температура плавления 122°C, легко возгоняется. В холодной воде растворяется плохо. Хорошо растворяется в спирте и эфире.

Ненасыщенные непредельные кислоты с одной двойной связью в молекуле имеют общую формулу C n H 2 n -1 COOH .

Высокомолекулярные непредельные кислоты часто упоминаются диетологами (они называют их ненасыщенными). Самая распространенная из них – олеиновая СН 3 –(СН 2) 7 –СН=СН–(СН 2) 7 –СООН или C 17 H 33 COOH . Она представляет собой бесцветную жидкость, затвердевающую на холоде.
Особенно важны полиненасыщенные кислоты с несколькими двойными связями: линолевая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 2 –(СН 2) 6 –СООН или C 17 H 31 COOH с двумя двойными связями, линоленовая СН 3 –СН 2 –(СН=СН–СН 2) 3 –(СН 2) 6 –СООН или C 17 H 29 COOH с тремя двойными связями и арахидоновая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 4 –(СН 2) 2 –СООН с четырьмя двойными связями; их часто называют незаменимыми жирными кислотами. Именно эти кислоты обладают наибольшей биологической активностью: они участвуют в переносе и обмене холестерина, синтезе простагландинов и других жизненно важных веществ, поддерживают структуру клеточных мембран, необходимы для работы зрительного аппарата и нервной системы, влияют на иммунитет. Отсутствие в пище этих кислот тормозит рост животных, угнетает их репродуктивную функцию, вызывает различные заболевания. Линолевую и линоленовую кислоты организм человека сам синтезировать не может и должен получать их готовыми с пищей (как витамины). Для синтеза же арахидоновой кислоты в организме необходима линолевая кислота. Полиненасыщенные жирные кислоты с 18 атомами углерода в виде эфиров глицерина находятся в так называемых высыхающих маслах – льняном, конопляном, маковом и др. Линолевая кислота C 17 H 31 COOH и линоленовая кислота C 17 H 29 COOH входят в состав растительных масел. Например, льняное масло содержит около 25% линолевой кислоты и до 58% линоленовой.

Сорбиновая (2,4-гексадиеновая) кислота СН 3 –СН=СН–СН=СНСООН была получена из ягод рябины (на латыни – sorbus). Эта кислота – прекрасный консервант, поэтому ягоды рябины не плесневеют.

Простейшая непредельная кислота, акриловая СН 2 =СНСООН, имеет острый запах (на латыни acris – острый, едкий). Акрилаты (эфиры акриловой кислоты) используются для получения органического стекла, а ее нитрил (акрилонитрил) – для изготовления синтетических волокон.

Называя вновь выделенные кислоты, химики, нередко, дают волю фантазии. Так, название ближайшего гомолога акриловой кислоты, кротоновой

СН 3 –СН=СН–СООН, происходит вовсе не от крота, а от растения Croton tiglium , из масла которого она была выделена. Очень важен синтетический изомер кротоновой кислоты – метакриловая кислота СН 2 =С(СН 3)–СООН, из эфира которой (метилметакрилата), как и из метилакрилата, делают прозрачную пластмассу – оргстекло.

Непредельные карбоновые кислоты способны к реакциям при­соединения:

СН 2 =СН-СООН + Н 2 → СН 3 -СН 2 -СООН

СН 2 =СН-СООН + Сl 2 → СН 2 Сl -СНСl -СООН

ВИДЕО:

СН 2 =СН-СООН + HCl → СН 2 Сl -СН 2 -СООН

СН 2 =СН-СООН + Н 2 O → НО-СН 2 -СН 2 -СООН

Две последние реакции протекают против правила Марковникова.

Непредельные карбоновые кислоты и их производные способ­ны к реакциям полимеризации.

Практически у всех дома есть уксус. И большинство людей знают, что его основу составляет Но что она представляет собой с химической точки зрения? Какие еще этого ряда существуют и каковы их характеристики? Попробуем разобраться в этом вопросе и изучить предельные одноосновные карбоновые кислоты. Тем более что в быту применяется не только уксусная, но и некоторые другие, а уж производные этих кислот вообще частые гости в каждом доме.

Класс карбоновых кислот: общая характеристика

С точки зрения науки химии, к данному классу соединений относят кислородсодержащие молекулы, которые имеют особенную группировку атомов - карбоксильную функциональную группу. Она имеет вид -СООН. Таким образом, общая формула, которую имеют все предельные одноосновные карбоновые кислоты, выглядит так: R-COOH, где R - это частица-радикал, которая может включать любое количество атомов углерода.

Согласно этому, определение данному классу соединений можно дать такое. Карбоновые кислоты - это органические кислородсодержащие молекулы, в состав которых входит одна или несколько функциональных группировок -СООН - карбоксильные группы.

То, что данные вещества относятся именно к кислотам, объясняется подвижностью атома водорода в карбоксиле. Электронная плотность распределяется неравномерно, так как кислород - самый электроотрицательный в группе. От этого связь О-Н сильно поляризуется, и атом водорода становится крайне уязвимым. Он легко отщепляется, вступая в химические взаимодействия. Поэтому кислоты в соответствующих индикаторах дают подобную реакцию:


Благодаря атому водорода, карбоновые кислоты проявляют окислительные свойства. Однако наличие других атомов позволяет им восстанавливаться, участвовать во многих других взаимодействиях.

Классификация

Можно выделить несколько основных признаков, по которым делят на группы карбоновые кислоты. Первый из них - это природа радикала. По этому фактору выделяют:

  • Алициклические кислоты. Пример: хинная.
  • Ароматические. Пример: бензойная.
  • Алифатические. Пример: уксусная, акриловая, щавелевая и прочие.
  • Гетероциклические. Пример: никотиновая.

Если говорить о связях в молекуле, то также можно выделить две группы кислот:


Также признаком классификации может служить количество функциональных групп. Так, выделяют следующие категории.

  1. Одноосновные - только одна -СООН-группа. Пример: муравьиная, стеариновая, бутановая, валериановая и прочие.
  2. Двухосновные - соответственно, две группы -СООН. Пример: щавелевая, малоновая и другие.
  3. Многоосновные - лимонная, молочная и прочие.

История открытия

Виноделие процветало с самой древности. А, как известно, один из его продуктов - уксусная кислота. Поэтому история известности данного класса соединений берет свои корни еще со времен Роберта Бойля и Иоганна Глаубера. Однако при этом химическую природу этих молекул выяснить долгое время не удавалось.

Ведь долгое время господствовали взгляды виталистов, которые отрицали возможность образования органики без живых существ. Но уже в 1670 году Д. Рэй сумел получить самого первого представителя - метановую или муравьиную кислоту. Сделал он это, нагревая в колбе живых муравьев.

Позже работы ученых Берцелиуса и Кольбе показали возможность синтеза этих соединений из неорганических веществ (перегонкой древесного угля). В результате была получена уксусная. Таким образом были изучены карбоновые кислоты (физические свойства, строение) и положено начало для открытия всех остальных представителей ряда алифатических соединений.

Физические свойства

Сегодня подробно изучены все их представители. Для каждого из них можно найти характеристику по всем параметрам, включая применение в промышленности и нахождение в природе. Мы рассмотрим, что собой представляют карбоновые кислоты, их и другие параметры.

Итак, можно выделить несколько основных характерных параметров.

  1. Если число атомов углерода в цепи не превышает пяти, то это резко пахнущие, подвижные и летучие жидкости. Выше пяти - тяжелые маслянистые вещества, еще больше - твердые, парафинообразные.
  2. Плотность первых двух представителей превышает единицу. Все остальные легче воды.
  3. Температура кипения: чем больше цепь, тем выше показатель. Чем более разветвленная структура, тем ниже.
  4. Температура плавления: зависит от четности количества атомов углерода в цепи. У четных она выше, у нечетных ниже.
  5. В воде растворяются очень хорошо.
  6. Способны образовывать прочные водородные связи.

Такие особенности объясняются симметрией строения, а значит, и строением кристаллической решетки, ее прочностью. Чем более простые и структурированные молекулы, тем выше показатели, которые дают карбоновые кислоты. Физические свойства данных соединений позволяют определять области и способы использования их в промышленности.

Химические свойства

Как мы уже обозначали выше, данные кислоты могут проявлять свойства разные. Реакции с их участием важны для промышленного синтеза многих соединений. Обозначим самые главные химические свойства, которые может проявлять одноосновная карбоновая кислота.

  1. Диссоциация: R-COOH = RCOO - + H + .
  2. Проявляет то есть взаимодействует с основными оксидами, а также их гидроксидами. С простыми металлами взаимодействует по стандартной схеме (то есть только с теми, что стоят до водорода в ряду напряжений).
  3. С более сильными кислотами (неорганические) ведет себя как основание.
  4. Способна восстанавливаться до первичного спирта.
  5. Особая реакция - этерификации. Это взаимодействие со спиртами с образованием сложного продукта - эфира.
  6. Реакция декарбоксилирования, то есть отщепления от соединения молекулы углекислого газа.
  7. Способна взаимодействовать с галогенидами таких элементов, как фосфор и сера.

Очевидно, насколько многогранны карбоновые кислоты. Физические свойства, как и химические, достаточно разнообразны. Кроме того, следует сказать, что в целом по силе как кислоты все органические молекулы достаточно слабы по сравнению со своими неорганическими коллегами. Их константы диссоциации не превышают показателя 4,8.

Способы получения

Существует несколько основных способов, которыми можно получать предельные карбоновые кислоты.

1. В лаборатории это делают окислением:

  • спиртов;
  • альдегидов;
  • алкинов;
  • алкилбензолов;
  • деструкцией алкенов.

2. Гидролиз:

  • сложных эфиров;
  • нитрилов;
  • амидов;
  • тригалогеналканов.

4. В промышленности синтез осуществляют окислением углеводородов с большим числом атомов углерода в цепи. Процесс осуществляется в несколько стадий с выходом множества побочных продуктов.

5. Некоторые отдельные кислоты (муравьиная, уксусная, масляная, валериановая и прочие) получают специфическими способами, используя природные ингредиенты.

Основные соединения предельных карбоновых кислот: соли

Соли карбоновых кислот - важные соединения, используемые в промышленности. Они получаются в результате взаимодействия последних с:

  • металлами;
  • основными оксидами;
  • щелочами;
  • амфотерными гидроксидами.

Особенно важное значение среди них имеют те, что образуются между щелочными металлами натрием и калием и высшими предельными кислотами - пальмитиновой, стеариновой. Ведь продукты подобного взаимодействия - мыла, жидкие и твердые.

Мыла

Так, если речь идет о подобной реакции: 2C 17 H 35 -COOH + 2Na = 2C 17 H 35 COONa + H 2 ,

то образующийся продукт - стеарат натрия - это есть по своей природе обычное хозяйственное мыло, используемое для стирки белья.

Если заменить кислоту на пальмитиновую, а металл на калий, то получится пальмитат калия - жидкое мыло для мытья рук. Поэтому можно с уверенностью заявлять, что соли карбоновых кислот - это на самом деле важные соединения органической природы. Их промышленное производство и использование просто колоссально в своих масштабах. Если представить, сколько мыла тратит каждый человек на Земле, то несложно вообразить и эти масштабы.

Эфиры карбоновых кислот

Особая группа соединений, которая имеет свое место в классификации органических веществ. Это класс Образуются они при реакции карбоновых кислот со спиртами. Название таких взаимодействий - реакции этерификации. Общий вид можно представить уравнением:

R , -COOH + R"-OH = R , -COOR" + H 2 O.

Продукт с двумя радикалами и есть сложный эфир. Очевидно, что в результате реакции карбоновая кислота, спирт, сложный эфир и вода претерпели значительные изменения. Так, водород от молекулы кислоты уходит в виде катиона и встречается с гидроксо-группой, отщепившейся от спирта. В итоге формируется молекула воды. Группировка, оставшаяся от кислоты, присоединяет к себе радикал от спирта, образуя молекулу сложного эфира.

Чем же так важны эти реакции и в чем промышленное значение их продуктов? Все дело в том, что сложные эфиры используются, как:

  • пищевые добавки;
  • ароматические добавки;
  • составной компонент парфюма;
  • растворители;
  • компоненты лаков, красок, пластмасс;
  • медикаментов и прочее.

Понятно, что области их использования достаточно широки, чтобы оправдать объемы производства в промышленности.

Этановая кислота (уксусная)

Это предельная одноосновная карбоновая кислота алифатического ряда, которая является одной из самых распространенных по объемам производства во всем мире. Формула ее - СН 3 СООН. Такой распространенности она обязана своим свойствам. Ведь области ее использования крайне широки.

  1. Она является пищевой добавкой под кодом Е-260.
  2. Используется в пищевой промышленности для консервации.
  3. Применяется в медицине для синтеза лекарственных средств.
  4. Компонент при получении душистых соединений.
  5. Растворитель.
  6. Участник процесса книгопечатания, крашения тканей.
  7. Необходимый компонент в реакциях химических синтезов множества веществ.

В быту ее 80-процентный раствор принято называть уксусной эссенцией, а если разбавить его до 15%, то получится просто уксус. Чистая 100% кислота называется ледяной уксусной.

Муравьиная кислота

Самый первый и простой представитель данного класса. Формула - НСООН. Также является пищевой добавкой под кодом Е-236. Ее природные источники:

  • муравьи и пчелы;
  • крапива;
  • хвоя;
  • фрукты.

Основные области использования:

Также в хирургии растворы данной кислоты используют как антисептические средства.

Таблица 16. Высшие карбоновые кислоты

Структурная формула ВЖК Название
Предельные ВЖК:
СН 3 –(СН 2) 10 –СООН Лауриновая кислота, додекановая кислота
СН 3 –(СН 2) 12 –СООН Миристиновая кислота, тетрадекановая кислота
СН 3 –(СН 2) 14 –СООН Пальмитиновая, кислота гексадекановая кислота
СН 3 –(СН 2) 16 –СООН Стеариновая кислота, октадекановая кислота
Непредельные ВЖК:
CH 3 (CH 2) 7 CH=CH(CH 2) 7 COOH или Олеиновая кислота, цис -9-октадеценовая кислота
СH 3 (CH 2) 4 CH=CHCH 2 CH=CH(CH 2) 7 COOH или Линолевая кислота, 9-цис-, 12-цис -октадекадиеновая кислота
СH 3 CH 2 CH=CHCH 2 CH=CHCH 2 CH=CH(CH 2) 7 COOH или Линоленовая кислота, 9-цис-, 12-цис -,15-цис- октадекатриеновая кислота
СH 3 (CH 2) 4 CH=CHCH 2 CH=CHCH 2 CH=CHCH 2 CH=CH(CH 2) 3 CO 2 H или Арахидоновая кислота, 5-цис-, 8-цис -,12-цис-15-цис- эйкозатетраеновая кислота

Содержатся в жирах. Они по своему строению одноосновны, имеют неразветвленную цепь углеродных атомов и содержат в молекулах четное число атомов углерода (С 12 – С 18). Ненасыщенные карбоновые кислоты, входящие в состав жиров, имеют цис-конфигурацию молекулы по отношению к двойным связям (см. табл. 13). Химические свойства высших карбоновых кислот напоминают свойства низших карбоновых кислот. С участием карбоксильной группы они вступают в реакции образования солей (мыла) галогенангидридов, ангидридов, амидов, сложных эфиров, нитрилов. Непредельные жирные кислоты также вступают в реакции по двойным связям (гидрирование, галогенирование, окисление).

Высшие кислоты находятся в природе, прежде всего, в составе жиров – полных сложных эфиров глицерина – причем жиры являются глицеридами не только одинаковых (простые ацилглицерины), но в основном разных кислот (смешанные ацилглицерины). Соотношение остатков карбоновых кислот меняется при переходе от одного жира к другому: каждый жир имеет свой характерный состав, мало изменяющийся от образца к образцу. Животные жиры, содержащие, главным образом, ацилглицерины предельных кислот, – твердые вещества. Растительные жиры, обычно называемые маслами, содержат глицериды непредельных кислот. Они являются преимущественно жидкостями, например подсолнечное, оливковое, конопляное и льняное масло.

В химическом отношении жиры – типичные сложные эфиры. Им характерны реакции гидролиза и присоединения по двойным связям ненасыщенных радикалов:

Жиры имеют большое значение в жизнедеятельности человека. Они выполняют функцию энергетического запаса, отлагаясь в тканях организма. По теплотворной способности жиры занимают первое место среди питательных веществ: 1 г жира при сгорании дает 9300 кал. Непредельные кислоты с системой связи –CH=CHCH 2 CH=CН– организм человека не синтезирует, но они должны входить в состав рациона для полноценного питания. Данные кислоты образуют липиды клеточных стенок и играют большую роль в придании им полупроницаемости при задерживании одних веществ и пропускании других.

Жиры служат исходным материалом в производстве глицерина и мыла. Высшие карбоновые кислоты, содержащие 24–32 атома углерода и спирты с числом атомов углерода от 16 до 30, входят в состав восков.

Фосфатиды (фосфолипиды) – диацилглицерины жирных кислот, в которых глицерин частично этерифицирован фосфорной кислотой, а кислота вторым своим гидроксилом этерифицирует аминоспирты –

холин HO–CH 2 CH 2 –N + (CH 3) 3 или этаноламин HO–CH 2 CH 2 –NH 2 .

Фосфатиды входят в состав клеток и тканей животных (мозговая и нервная ткань, куриный желток) и раститетельных организмов, в куриный желток и играют важную роль в биологических процессах: при передаче нервного возбуждения, для регулирования проницаемости оболочек клеток и т.д.

Контрольные вопросы к главе 12 «Карбоновые кислоты»

№ 1 Чем объясняются кислотные свойства карбоновых кислот и чем определяется их сила? Что такое рК а кислоты? Почему в карбоновой кислоте связи С-О различные по длине, а в карбоксилат-анионе одинаковые? Почему относительную силу кислот можно оценивать по стабильности их анионов?

Расположите соединения в ряд по возрастанию их кислотных свойств:

(а) a-бромпропионовая кислота, a,a-дибромпропионовая кислота, b-бромпропионовая кислота, a,b-дибромпропионовая кислота, пропионовая кислота; (б) бензойная кислота, 4-хлорбензойная кислота, 2,4,6-трихлор-бензойная кислота, 2,4-дихлорбензойная кислота; (в)триметилуксусная кислота, трифторуксусная кислота, уксусная кислота, пропионовая кислота, трихлоруксусная кислота; (г)муравьиная кислота, уксусная кислота, изомасляная кислота, щавелевая кислота; (д) иодуксусная кислота, бромуксусная кислота, уксусная кислота, хлоруксусная кислота, трифторуксусная кислота.

№ 2. Какие существуют способы повышения выхода сложного эфира при проведении реакции этерификации кислоты спиртом? Покажите механизм этерификации валериановой кислоты метанолом в прис. H 2 SO 4 . Что такое переэтерификация? Приведите механизм этой реакции на примере синтеза октилового эфира пропионовой кислоты.

№ 3. Приведите механизмы кислотного и щелочного гидролиза метилового эфира бензойной кислоты. Объясните, почему щелочи катализируют только гидролиз сложных эфиров, но не их образование. Если гидролиз метилбензоата проводить водой, меченной изотопом 18 О, то в составе какого продукта гидролиза обнаружится 18 О?

№ 4. Какие функциональные производные карбоновых кислот вам известны? Укажите методы их получения, свойства и взаимосвязь.

№ 5. Что такое реакции ацилирования? Приведите примеры. Расположите в ряд по уменьшению ацилирующих свойств производные карбоновых кислот: бромангидрид уксусной кислоты, уксусный ангидрид, хлорангидрид уксусной кислоты, ангидрид масляной кислоты.

№ 6. Как различить: (а) муравьиную и уксусную кислоты; (б) щавелевую и уксусную кислоты; (в) щавелевую и янтарную кислоты; (г) малеиновую и фумаровую кислоты; (д) олеиновую и лауриновую кислоты.

№ 7. Главные глицериды хлопкового масла – пальмитоолеолинолеин пальмитодиолеин,трилинолеин. Напишите структурные формулы этих веществ.

№ 8. Напишите уравнения реакций и назовите образующиеся продукты:(а)муравьиной кислоты с пентанолом-1;(б)бензойной кислоты с хлористым тионилом; (в) щелочного гидролиза этилового эфира янтарной кислоты; (г) дегидратации ангидрида масляной кислоты с P 2 O 5 ; (д) уксусного ангидрида с диметиламином; (е) расшифруйте схему превращений:

№ 9. Напишите схемы синтеза следующих соединений: (а) изомасляной кислоты из пропанола-1; (б) a-хлорфенилуксусной кислоты из толуола; (в)бензамида из толуола; (г) α-метилянтарной (2-метилбутандиовой-1,4) кислоты из пропилена; (д)циклопентанкарбоновую кислоту из циклопентана.

№10. Напишите схемы синтеза следующих кислот, используя малоновый эфир и необходимые алкилгалогениды: (а) b-фенилпропионовой кислоты; (б) пентен-4-овой кислоты; (в) 2-этил-3-фенилпропановой кислоты; (г)диэтил-уксусной кислоты; (д) α-метилянтарной (2-метилбутандиовой-1,4) кислоты.

№ 11. Установите строение соединений: (а) С 3 Н 4 О 4 , обладает кислыми свойствами, с этанолом дает вещество С 7 Н 12 О 4 ; при нагревании исходного вещества выделяется СО 2 и образуется вещество С 2 Н 4 О 2 , водный ра­створ которого также имеет рН<7; (б) С 4 Н 8 О 2 , реагирует с раствором Na 2 CO 3 с выделением газа, при сплавлении с щелочью образуется пропан, с Са(ОН) 2 дает соединение С 8 Н 14 О 4 Са, при пиролизе которого получается дипропилкетон; (в) С 4 Н 8 О 2 , нерастворяяется в воде, не реагирует с карбонатом натрия, а при кислотном гидролизе образует хорошо растворимые в воде вещества С 2 Н 6 О и С 2 Н 4 О 2 , последнее вещество способно реагировать с эквимолярным количеством NaOH; (г) С 4 Н 6 О 2 , при озонолизе образует формальдегид и пировиноградную кислоту СН 3 -СО-СООН.

ГИДРОКСИКИСЛОТЫ

Определение. Гидроксикислоты – соединения, в молекулах которых содержатся гидроксильная и карбоксильная группы.

Классификация

1) Функциональные группы гидроксикислот могут быть присоединены к

алифатической цепи молекулы (спиртокислоты) или к ароматическому кольцу (фенолокислоты):

п -гидроксибензойная кислота миндальная кислота (α-оксифенилуксусная кислота)

(фенолокислота) (спиртокислота)

2) По взаимному расположению функциональных групп гидроксикислоты

делятся на α-, β-, γ- и др. замещенные. Буквы греческого алфавита указывают положение гидроксильной группы относительно карбоксильной, причем отсчет ведется от ближайшего к карбоксильной группе атома углерода (от атома С-2).

α-гидроксимасляная кислота β-гидроксимасляная кислота

3) По количеству карбоксильных групп различают одноосновные, двухосновные, многоосновные гидроксикислоты:

молочная кислота тартроновая кислота лимонная кислота

(одноосновная) (двухосновная) (трехосновная)

4) По количеству гидроксильных групп гидроксикислоты делят на одноатомные, двухатомные и т.д.:

яблочная кислота (одноатомная) винная кислота (двухатомная)

Систематические названия гидроксикислот строятся по общим принципам заместительной номенклатуры, однако для многих широко распространенных представителей предпочтительными являются тривиальные названия.

Получение. a-Гидроксикислоты удобно получать гидролизом a-галоген-замещенных карбоновых кислот и оксинитрильным методом из карбонильных соединений.

ного синтеза подвергаются бензоиновой конденсации. В этих случаях циангидрин получают из соответствующего гидросульфитного производного действием NaCN:

К другим методам синтеза относят­ся: реакции a-аминокислот с азотистой кислотой, мягкое окисле­ние гликолей R-СH(OH)-CH 2 OH и восстановление эфиров кетонокислот.

R–CH–COOH HNO 2 R–CH–COOH + N 2 + H 2 O

│ ¾¾¾¾¾® │

R-СH-CH 2 OH OH R–CH–COONH 4 + Ag ↓ + NH 3 + H 2 O

│ ¾¾¾¾¾¾¾¾¾® │

R–C–COOСH 3 ¾¾® R–CH–COOCH 3 ¾¾® R–CH–COOH

║ (Ni) │ (H+) │

b-Гидроксикислоты обычно получают, используя реакции мягкого окисле­ния альдолей (аммиакат серебра, бромная вода), гидратации a,b-непредельных карбоновых кислот или методом Реформатского, который заключается во взаимодействии карбонильных соединений с цинковой пылью и эфирами a-галогензамещенных карбоновых кислот:

β-Гидроксикислоты можно также получать, иcпользуя общие методы: например, заменой галогена и восстановлением карбонильной группы, если они находятся в β-положении по отношению к карбоксильной группе:

Фенолкарбоновые кислоты синтезируют по реакции Кольбе – Шмидтапри нагревании фенолятовщелочных металлов с оксидом углерода (IV). Использование фенолята натрия приводит к о -оксибензойной кислоте:

Использование фенолята калия по аналогичной схеме дает к ее п -изомер.

Химические реакции

В реакциях, характерных для карбоксильной и гидроксильной групп, могут затрагиваться как та, так и другая или обе одновре­менно. В последнем случае для проведения реакции по одной из групп используют методы защиты другой.

Таблица 17. Реакции функциональных групп гидроксикислот с реагентами

Схема 16. Химические реакции молочной кислоты

Фенолокислоты в отличие от спиртокислот при взаимодействии с гидроксидом натрия реагируют обеими функциональными группами, а в случае обработки бромоводородом фенольный гидроксил проявит инертность.

В результате ацилирования салициловой кислоты уксусным ангидридом получают лекарственный препарат – аспирин (ацетилсалициловую кислоту):

Салициловая кислота аспирин

Фенолокислотыэтерифицируются по карбоксильной группе спиртами в присутствии минеральной кислоты, однако низкая нуклеофильность фенолов не позволяет таким способом получить фенилацетат. Поэтому салициловую кислоту предварительно превращают в более активный ацилирующий агент – ее хлорангидрид, которым затем ацилируют фенол:

Специфической реакцией гидроксикислот является дегидратация при нагрева­нии, причем в зависимости от их типа реакции идут по разным схемам, приводящим к различным продуктам:

а) a-гидроксикислоты обычно образуют продукты межмолекулярной реакции - лактиды:

б) b-гидроксикислоты превращаются в a,b-непредельные кислоты:

CН 3 –СН 2 –СН–СН 2 –СООН ¾¾¾® CН 3 –СН 2 –СН=СН–СООН

в) g- и d-гидроксикислоты дают циклические эфиры (лактоны):

γ-гидроксимасляная кислота γ-бутиролактон

δ-гидроксикапроновая кислота δ-капролактон

Внутримолекулярную этерификацию g-гидроксикарбоновой кислоты до g-лактона в кислой среде можно представить следующей схемой:

г) при нагревании лимонная кислота (как b-гидроксикислота) превращается в аконитовую кислоту, которая распадается далее на смесь итаконового и цитраконового ангидридов. В присутствии H 2 SO 4 лимонная кислота (как a-гидроксикислота) отщепляет муравьиную кислоту и образует ацетондикарбоновую кислоту

аконитовая кислота итаконовый ангидрид цитраконовый ангидрид

лимонная кислота ацетондикарбоновая кислота ацетон

д) винная кислота при нагревании теряет воду и декарбоксилируется, превращаясь в пировиноградную кислоту:

Оптическая изомерия. Растворы некоторых органических веществ способны отклонять плоскость плоскополяризованного света на определенный угол. Такие соединения называются оптически активными и существуют в виде двух оптических изомеров: один из этих изомеров вращает плоскость поляризации влево, другой (в одинаковых условиях) на такой же угол вправо. Для обозначения этого явления пользуются знаками (+) и (─), которые ставят перед названием оптического изомера. Такие изомеры называют энантиомерами. Смесь, состоящую из равных количеств левовращающего и правовращающего изомеров, называют рацематом и обозначают символом (+ ). Рацемат оптически неактивен из-за взаимной компенсации оптической активности входящих в него оптических изомеров. Одной из причин появления оптической активности у некоторых органических веществ является наличие в молекуле асимметрического атома углерода, у которого все четыре валентности соединены с различными заместителями. Любое органическое вещество, содержащее асимметрический атом, можно представить в виде двух пространственных форм, которые отличаются друг от друга как предмет от зеркального отображения. При наложении этих пространственных форм нельзя добиться их совмещения. Такая изомерия получила название «зеркальной». Молекулы, несовместимые в пространстве и относящиеся друг к другу как зеркальные отображения, являются хиральными; у них отсутствуют плоскости и центры симметрии. При наличии в молекуле нескольких (n ) асимметрических атомов углерода, общее число стереоизомеров (N ) (сюда входят зеркальные изомеры – энантиомеры и диастереомеры – незеркальные изомеры) определяют по формуле: N = 2 n .

При изображении оптически активных изомеров используют проекционные формулы Фишера. Для этого главную цепь молекулы гидроксикислоты располагается вертикально с первым атомом углерода вверху (карбоксильная группа). Тетраэдр асимметрического атома углерода, содержащий четыре раз-

Если при таком построении функциональная группа ОН оказы­вается справа, то соединение относится к D-ряду, если слева, то к L-ряду.

При изменении положения проекционной формулы на плоскости, во избежание искажения стереохимического смысла, преобразования проводят с соблюдением следующих правил:

1. Проекционные формулы Фишера нельзя выводить из плоскости бумаги, ее нельзя поворачивать на 90° (допустим поворот на 180°):

Допустимо фиксирование одной группы и вращение трех остальных по часовой стрелки или против часовой стрелки:

2. В проекциях Фишера однократная взаимная перестановка любых двух групп приводит к превращению энантиомера в его зеркальное изображение, а

при перестановке местами заместителей у одного асимметрического центра четное число раз стереохимическая конфигурация соединения сохраняется.

3. Проекционные формулы Фишера нельзя применять к молекулам, хиральность которых обусловлена не наличием асимметрического атома, а другими причинами.

Для обозначения конфигурации асимметиричесих атомов в хиральных (оптически активные) молекулах в настоящее время используют D,L- (см. выше) и R,S- системы обозначений. В основу R,S-системы обозначения конфигурации положен принцип старшинства заместителей, окружающих центр хиральности. Для этого проекционную формулу Фишера преобразуют так, чтобы младший заместитель разместился внизу, на вертикальной связи. Если после преобразования проекции падение старшинства заместителей остальных трех группировок проходит против часовой стрелки, то асимметрическому атому приписывают S-конфигурацию. Падение старшинства по часовой стрелке соответствует R-конфигурации. Старшинство заместителей определяется следующими правилами:

1. Если с хиральным центром (асимметрический атом угле­рода) связаны четыре различных атома, то старшим является атом с большим атомным номером (I > Вг > Cl > S > Р > F >N > ОН).

2. Если старшинство групп нельзя определить с помощью пра­вила 1, то необходимо провести аналогичное сравнение следую­щих атомов в группе:

а) -СН 2 С1 > -СН 2 ОН > -СН 2 СН 3 ;

б) -С(СН 3) 3 > -СН(СН 3) 2 > -СН 2 СН 3 > -СН 3 ;

в) СН 3 -О-СН-СН 2 СН 3 > Н-О-СН-СН 2 СН 3 .

3. Если группа содержит двойную (тройную) связь, то ее ато­мы следует удвоить (утроить). Так, -СН=СН 2 эквивалентна -CH-CH 2 -

Эквивалентна ; -CºN эквивалентна

а) СН 3 -СН-СН 2 СН 3 > -СН=СН 2 > -СН 3 ;

б) -СООСН 3 > -СООН > -CONH 2 > -СНО;

в) -CºN > -С 6 Н 5 > -СºСН > -СН=СН 2 .

4. Старшинство изотопов убывает с уменьшением их массы (Т> D > Н). При обозначении конфигурации по R,S-системе рас­сматривается модель хиральной молекулы, кото­рую располагают так, чтобы младший заместитель (атом водорода) был удален от глаза наблюдателя. Если падение старшинства остальных заместителей происходит по ходу часовой стрелки, то соединению приписывают R-конфигурацию, если против - S-конфигурацию.

.
O

//
Группа атомов -С называется карбоксильной группой или карбоксилом.
\

OH
Органические кислоты, содержащие в молекуле одну карбоксильную группу, являются одноосновными. Общая формула этих кислот RCOOН.

Карбоновые кислоты, содержащие две карбоксильные группы, называются двухосновными. К ним относятся, например, щавелевая и янтарная кислоты.

Существуют и многоосновные карбоновые кислоты, содержащие более двух карбоксильных групп. К ним относится, например, трехосновная лимонная кислота. В зависимости от природы углеводородного радикала карбоновые кислоты делятся на предельные, непредельные, ароматические.

Предельными, или насыщенными, карбоновыми кислотами являются, например, пропановая (пропионовая) кислота или уже знакомая нам янтарная кислота.

Очевидно, что предельные карбоновые кислоты не содержат п -связей в углеводородном радикале.

В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, непредельным углеводородным радикалом, например в молекулах акриловой (пропеновой) СН2=СН-СООН или олеиновой СН3-(СН2)7-СН= СН-(СН2)7-СООН и других кислот.

Как видно из формулы бензойной кислоты, она является ароматической, так как содержит в молекуле ароматическое (бензольное) кольцо.

Номенклатура и изомерия

Общие принципы образования названий карбоновых кислот, как и других органических соединений, мы уже рассматривали. Остановимся подробнее на номенклатуре одно- и двухосновных карбоновых кислот. Название карбоновой кислоты образуется от названия соответствующего алкана (алкана с тем же числом атомов углерода в молекуле) с добавлением суффикса -ов, окончания -ая и слова кислота. Нумерация атомов углерода начинается с карбоксильной группы. Например:

Многие кислоты имеют и исторически сложившиеся, или тривиальные, названия (табл. 6).

После первого знакомства с многообразным и интересным миром органических кислот рассмотрим более подробно предельные одноосновные карбоновые кислоты.

Понятно, что состав этих кислот будет отражаться общей формулой С n Н 2n O2, или С n Н 2n +1 CООН, или RСООН.

Физические свойства предельных одноосновных карбоновых кислот

Низшие кислоты, т. е. кислоты с относительно небольшой молекулярной массой, содержащие в молекуле до четырех атомов углерода, - жидкости с характерным резким запахом (вспомните запах уксусной кислоты). Кислоты, содержащие от 4 до 9 атомов углерода, - вязкие маслянистые жидкости с неприятным запахом; содержащие более 9 атомов углерода в молекуле - твердые вещества, которые не растворяются в воде. Температуры кипения предельных одноосновных карбоно-вых кислот увеличиваются с ростом числа атомов углерода в молекуле и, следовательно, с ростом относительной молекулярной массы. Так, например, температура кипения муравьиной кислоты равна 101 °С, уксусной - 118 °С, пропионовой - 141 °С.

Простейшая карбоновая кислота - муравьиная НСООН, имея небольшую относительную молекулярную массу (46), при обычных условиях является жидкостью с температурой кипения 100,8 °С. В то же время бутан (МR(С4Н10) = 58) в тех же условиях газообразен и имеет температуру кипения -0,5 °С. Это несоответствие температур кипения и относительных молекулярных масс объясняется образованием димеров карбоновых кислот, в которых две молекулы кислоты связаны двумя водородными связями. Возникновение водородных связей становится понятным при рассмотрении строения молекул карбоновых кислот.

Молекулы предельных одноосновных карбоновых кислот содержат полярную группу атомов - карбоксил (подумайте, чем вызвана полярность этой функциональной группы) и практически неполярный углеводородный радикал. Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи.

Муравьиная и уксусная кислоты растворимы в воде неограниченно. Очевидно, что с увеличением числа атомов в углеводородном радикале растворимость карбоновых кислот снижается.

Зная состав и строение молекул карбоновых кислот, нам будет нетрудно понять и объяснить химические свойства этих веществ.

Химические свойства

Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильно полярную связь между атомами водорода и кислорода . Эти свойства вам хорошо известны. Рассмотрим их еще раз на примере растворимых в воде органических кислот.

1. Диссоциация с образованием катионов водорода и анионов кислотного остатка. Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды.

Равновесие диссоциации карбоновых кислот смещено влево, подавляющее большинство их - слабые электролиты. Тем не менее кислый вкус, например, муравьиной и уксусной кислот объясняется диссоциацией на катионы водорода и анионы кислотных остатков.

Очевидно, что присутствием в молекулах карбоновых кислот «кислого» водорода, т. е. водорода карбоксильной группы, обусловлены и другие характерные свойства.

2. Взаимодействие с металлами, стоящими в электрохимическом ряду напряжений до водорода. Так, железо восстанавливает водород из уксусной кислоты:

2СН3-СООН + Fe -> (CHgCOO)2Fe + Н2

3. Взаимодействие с основными оксидами с образованием соли и воды:

2R-СООН + СаО -> (R-СОО)2Са + Н20

4. Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации):

R-СООН + NaOH -> R-COONa + Н20 3R-СООН + Са(ОН)2 -> (R-СОО)2Са + 2Н20

5. Взаимодействие с солями более слабых кислот, с образованием последних. Так, уксусная кислота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия.

6. Взаимодействие карбоновых кислот со спиртами с образованием сложных эфиров - уже известная вам реакция эте-рификации (одна из наиболее важных реакций, характерных для карбоновых кислот). Взаимодействие карбоновых кислот со спиртами катализируется катионами водорода.

Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотни-мающих средств и удалении эфира из реакционной смеси.

В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимодействие сложного эфира с водой), образуются кислота и спирт. Очевидно, что реагировать с карбоновыми кислотами, т. е. вступать в реакцию этерификации, могут и многоатомные спирты, например глицерин:

Dсе карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в молекулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остатка.

7. Реакции присоединения по кратной связи - в них вступают непредельные карбоновые кислоты; например, реакция присоединения водорода - гидрирование. При гидрировании олеиновой кислоты образуется предельная стеариновая кислота.

Непредельные карбоновые кислоты, как и другие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акриловая кислота обесцвечивает бромную воду.

8. Реакции замещения (с галогенами) - в нее способны вступать предельные карбоновые кислоты; например, при взаимодействии уксусной кислоты с хлором могут быть получены различные хлорпроизводные кислоты:


При галогенировании карбоновых кислот, содержащих более одного атома углерода в углеводородном остатке, возможно образование продуктов с различным положением галогена в молекуле. При протекании реакции по свободнорадикальному механизму могут замещаться любые атомы водорода в углеводородном остатке. Если же реакцию проводить в присутствии небольших количеств красного фосфора , то она идет селективно - водород замещается лишь в а -положении (у ближайшего к функциональной группе атома углерода) в молекуле кислоты. Причины такой селективности вы узнаете при изучении химии в высшем учебном заведении.

Карбоновые кислоты образуют различные функциональные производные при замещении гидроксильной группы. При гидролизе этих производных из них вновь образуется карбоновая кислота.

Хлорангидрид карбоновой кислоты можно получить действием на кислоту хлорида фосфора(ІІІ) или тионилхлорида (SОСl 2). Ангидриды карбоновых кислот получают взаимодействием хлор-ангидридов с солями карбоновых кислот. Сложные эфиры образуются в результате этерификации карбоновых кислот спиртами. Этерификация катализируется неорганическими кислотами.

Эту реакцию инициирует протонирование карбоксильной группы - взаимодействие катиона водорода (протона) с неподеленной электронной парой атома кислорода. Протонирование карбоксильной группы влечет за собой увеличение положительного заряда на атоме углерода в ней:


Способы получения

Карбоновые кислоты могут быть получены окислением первичных спиртов и альдегидов.

Ароматические карбоновые кислоты образуются при окислении гомологов бензола .

Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Как уже говорилось выше, реакции этерификации и гидролиза, катарилизируемые кислотой, обратимы. Гидролиз сложного эфира под действием водного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль. При гидролизе нитрилов сначала образуются амиды, которые затем превращаются в кислоты. Карбоновые кислоты образуются при взаимодействии магний-органических соединений с оксидом углерода(IV).

Отдельные представители карбоновых кислот и их значение

Муравьиная (метановая) кислота НСООН - жидкость с резким запахом и температурой кипения 100,8 °С, хорошо растворима в воде. Муравьиная кислота ядовита, при попадании на кожу вызывает ожоги! Жалящая жидкость, выделяемая муравьями, содержит эту кислоту. Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленности, медицине. Она также используется при крашении тканей и бумаги.

Уксусная (этановая) кислота СН3СООН - бесцветная жидкость с характерным резким запахом, смешивается с водой в любых отношениях. Водные растворы уксусной кислоты поступают в продажу под названием уксуса (3-5%-ный раствор) и уксусной эссенции (70-80%-ный раствор) и широко используются в пищевой промышленности. Уксусная кислота - хороший растворитель многих органических веществ и поэтому используется при крашении, в кожевенном производстве, в лакокрасочной промышленности. Кроме этого, уксусная кислота является сырьем для получения многих важных в техническом отношении органических соединений: например, на ее основе получают вещества, используемые для борьбы с сорняками, - гербициды.

Уксусная кислота является основным компонентом винного уксуса, характерный запах которого обусловлен именно ей. Она продукт окисления этанола и образуется из него при хранении вина на воздухе.

Важнейшими представителями высших предельных одноосновных кислот являются пальмитиновая С15Н31СООН и стеариновая С17Н35СООН кислоты. В отличие от низших кислот эти вещества твердые, плохо растворимые в воде.

Однако их соли - стеараты и пальмитаты - хорошо растворимы и обладают моющим действием, поэтому их еще называют мылами. Понятно, что эти вещества производят в больших масштабах.

Из непредельных высших карбоновых кислот наибольшее значение имеет олеиновая кислота С17Н33СООН, или (СН2)7СООН. Это маслоподоб-ная жидкость без вкуса и запаха. Широкое применение в технике находят ее соли.

Простейшим представителем двухосновных карбоновых кислот является щавелевая (этандиовая) кислота НООС-СООН, соли которой встречаются во многих растениях, например в щавеле и кислице. Щавелевая кислота - это бесцветное кристаллическое вещество, хорошо растворяется в воде. Она применяется при полировке металлов, в деревообрабатывающей и кожевенной промышленности.

1. Непредельная элаидиновая кислота С17Н33СООН является транс-изомером олеиновой кислоты. Составьте структурную формулу этого вещества.

2. Составьте уравнение реакции гидрирования олеиновой кислоты. Назовите продукт этой реакции.

3. Составьте уравнение реакции горения стеариновой кислоты. Какой объем кислорода и воздуха (н. у.) потребуется для сжигания 568 г стеариновой кислоты?

4. Смесь твердых жирных кислот - пальмитиновой и стеариновой - называют стеарином (именно из него изготавливают стеариновые свечи). Какой объем воздуха (н. у.) потребуется для сжигания двухсотграммовой стеариновой свечи, если стеарин содержит равные массы пальмитиновой и стеариновой кислот? Какой объем углекислого газа (н. у.) и масса воды образуются при этом?

5. Решите предыдущую задачу при условии, что свеча содержит равные количества (одинаковое число молей) стеариновой и пальмитиновой кислот.

6. Для удаления пятен ржавчины их обрабатывают раствором уксусной кислоты. Составьте молекулярные и ионные уравнения происходящих при этом реакций, учитывая, что ржавчина содержит оксид и гидроксид железа(III) - Fе2O3 и Fе(ОН)3. Почему такие пятна не удаляются водой? Почему они исчезают при обработке раствором кислоты?

7. Добавляемую в бездрожжевое тесто пищевую (питьевую) соду МаНС03 предварительно «гасят» уксусной кислотой. Проделайте дома эту реакцию и составьте ее уравнение, зная, что угольная кислота слабее уксусной. Объясните образование пены.

8. Зная, что хлор более электроотрицателен, чем углерод , расположите следующие кислоты: уксусную, пропионо-вую, хлоруксусную, дихлоруксусную и трихлоруксусную кислоты в порядке усиления кислотных свойств. Обоснуйте свой результат.

9. Чем можно объяснить, что муравьиная кислота вступает в реакцию «серебряного зеркала»? Составьте уравнение этой реакции. Какой газ может выделяться при этом?

10. При взаимодействии 3 г предельной одноосновной карбо-новой кислоты с избытком магния выделилось 560 мл (н. у.) водорода. Определите формулу кислоты.

11. Приведите уравнения реакции, с помощью которых можно описать химические свойства уксусной кислоты. Назовите продукты этих реакций.

12. Предложите несложный лабораторный способ, с помощью которого можно распознать пропановую и акриловую кислоты.

13. Составьте уравнение реакции получения метилформиата - сложного эфира метанола и муравьиной кислоты. В каких условиях следует проводить эту реакцию?

14. Составьте структурные формулы веществ, имеющих состав С3Н602. К каким классам веществ их можно отнести? Приведите уравнения реакций, характерных для каждого из них.

15. Вещество А - изомер уксусной кислоты - не растворяется в воде, однако может подвергаться гидролизу. Какова структурная формула вещества А? Назовите продукты его гидролиза.

16. Составьте структурные формулы следующих веществ:

а) метилацетат;
б) щавелевая кислота;
в) муравьиная кислота;
г) дихлоруксусная кислота;
д) ацетат магния;
е) этилацетат;
ж) этилформиат;
з) акриловая кислота.

17*. Образец предельной одноосновной органической кислоты массой 3,7 г нейтрализовали водным раствором гидрокарбоната натрия. При пропускании выделившегося газа через известковую воду было получено 5,0 г осадка. Какая кислота была взята и каков объем выделившегося газа?

Карбоновые кислоты в природе

Карбоновые кислоты очень часто встречается в природе. Они содержится в фруктах и растениях. Они присутствуют в хвое, поте, моче и соке крапивы. Вы знаете, оказывается, что основная масса кислот образуют сложные эфиры, которые обладают запахами. Так запах молочной кислоты, которая содержится в поте человека, привлекает комаров, они ее чувствуют на довольно-таки значительном расстоянии. Поэтому, сколько бы вы не пытались отогнать назойливого комара, он все равно хорошо чувствует свою жертву. Кроме человеческого пота, молочная кислота содержится в соленых огурцах и квашеной капусте.

А самки обезьян, чтобы привлечь к себе самца, выделяет уксусную и пропионовую кислоту. Чувствительный, собачий нос способен услышать запах масляной кислоты, которая имеет концентрацию 10–18 г/см3.

Многие виды растений способны выделять выделяют уксусную и масляную кислоту. А некоторые сорные растения этим пользуются и выделяя вещества, устраняют своих конкурентов, подавляя их рост, а иногда и вызывая их гибель.

Кислотой пользовались и индейцы. Чтобы уничтожить врага, они смачивали стрелы смертельным ядом, который оказался производным от уксусной кислоты.

И тут возникает закономерный вопрос, представляют ли кислоты опасность для здоровья человека? Ведь широко распространенная в природе щавелевая кислота, которая содержится в щавеле, апельсинах, смородине и малине, почему-то не нашла применения в пищевой промышленности. Оказывается, щавелевая кислота в двести раз сильнее уксусной кислоты, и способна даже разъедать посуду, а ее соли, накапливаясь в организме человека, образовывать камни.

Кислоты нашли широкое применение во всех сферах человеческой жизни. Их применяют в медицине, косметологии, пищевой промышленности, сельском хозяйстве и используют для бытовых нужд.

В медицинских целях используются такие органические кислоты, как молочная, винная, аскорбиновая. Наверное, каждый из вас употреблял для укрепления организма витамин С – это как раз и есть аскорбиновая кислота. Она не только помогает укрепить иммунитет, но и обладает способностью выводить из организма канцерогены и токсины. Молочную кислоту используют для прижигания, так как она обладает высокой гигроскопичностью. А вот винная кислота действует, как легкое слабительное, как противоядие при отравлениях щелочами и как компонент, необходимый для приготовления плазмы при переливании крови.

А вот поклонникам косметических процедур, следует знать, что содержащиеся в цитрусовых фруктах, фруктовые кислоты, благоприятно влияют на кожу, так, как проникая вглубь, они способны ускорять процесс обновления кожи. Кроме этого, запах цитрусовых имеет тонизирующее влияние на нервную систему.

Замечали ли вы, что такие ягоды, как клюква и брусника долго хранятся и остаются свежими. А знаете почему? Оказывается, в них содержится бензойная кислота, которая является прекрасным консервантом.

А вот в сельском хозяйстве широкое применение нашла янтарная кислота, так как с ее помощью можно повысить урожайность культурных растений. Также она способна стимулировать рост растений и ускорять их развитие.

© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары