Вконтакте Facebook Twitter Лента RSS

Выдающиеся ученые генетики. Невероятные открытия в генетике, которые изменят будущее человека


Стало известно, что ученые из Университета Калифорнии в Сан-Франциско нашли ген, который отвечает за интеллект. А это позволит в будущем искусственно увеличивать разум человека в любом возрасте. И это лишь одно из множества последних открытий в генетике , каждое из которых имеет важнейшее значение для науки и Человечества.

Ген интеллекта

Как уже упоминалось выше, американские ученые из Калифорнии обнаружили белок с названием «клото» и ген KL-VS, который отвечает за его выработку. Последний тут же получил имя «ген интеллекта», ведь данный белок способен повысить показатели IQ человека сразу на 6 пунктов.

Более того, этот белок можно синтезировать искусственно, и не важно, какого возраста человек. Следовательно, в будущем ученые научатся научными методами делать людей умнее вне зависимости от их природных интеллектуальных данных.



Конечно, при помощи «клото» невозможно сделать из обычного человека гения. Но помочь людям с задержками интеллектуального развития, а также тем, кто страдает от болезни Альцгеймера, в будущем, возможно, и получится.

Болезнь Альцгеймера

Кстати, о болезни Альцгеймера. С момента ее описания в 1906 году ученые не могли достоверно выяснить природу данного заболевания, по каким причинам оно развивается у одних людей, а у других – нет. Но недавно появился существенный прорыв в изучении этой проблемы. Японские исследователи из Университета Осака обнаружили ген, который развивает болезнь Альцгеймера у подопытных мышей.

В рамках исследований был выявлен ген klc1, способствующий накоплению в тканях мозга бета-амилоидного белка, который и является основным фактором развития болезни Альцгеймера. Механизм этого процесса был известен давно, но раньше никто не мог объяснить его причину.



Опыты показали, что при блокировке гена klc1, количество скапливающегося в головном мозге бета-амилоидного белка снижается на 45%. Ученые надеются, что в будущем их исследования помогут в борьбе с болезнью Альцгеймера – опасным заболеванием, которым страдают десятки миллионов пожилых людей по всему миру.

Ген глупости

Оказывается, существует не только ген интеллекта, но и ген глупости. Во всяком случае, так считают ученые из Университета Эмори в Техасе. Они обнаружили генетическое отклонение RGS14, отключение которого позволяет заметно улучшить интеллектуальные способности подопытных мышей.

Выяснилось, что блокировка гена RGS14 делает более активной область CA2 в гиппокампе – области мозга, отвечающей за накопление новых знаний и сохранение воспоминаний. без этой генетической мутации стали лучше запоминать объекты и перемещаться по лабиринту, а также лучше адаптироваться к изменяющимся условиям внешней среды.



Ученые из Техаса надеются в будущем разработать препарат, который блокировал бы ген RGS14 у уже живущего человека. Это позволило бы дать людям невиданные ранее интеллектуальные возможности и познавательные способности. Но до реализации данной идеи нужно еще не одно десятилетие.

Ген ожирения

Оказывается, у ожирения также есть генетические причины. В разные годы ученые находили разные гены, способствующие появлению лишнего веса и большого количества жира в организме. Но «главным» из них на данный момент считается IRX3.



Выяснилось, что этот ген влияет на процент жира относительно общей массы. Во время лабораторных исследований, оказалось, что у мышей с поврежденным IRX3 процент жира в организме в два раза меньше, чем у остальных. И это притом, что их кормили одинаковым количеством высококалорийной пищи.



Дальнейшее изучение генетической мутации IRX3, а также механизмов ее воздействия на организм позволит создавать эффективные лекарства от ожирения и диабета.

Ген счастья

И главное, на наш взгляд, открытие генетиков из всех упомянутых в этом обзоре. Обнаруженный учеными из Лондонской школы здоровья, 5-HTTLPR называют «геном счастья». Ведь, оказывается, он отвечает за распространение гормона серотонин в нервных клетках.

Считается, что серотонин является одним из важнейших факторов, отвечающих за настроение человека, он заставляет нас радоваться или грустить, в зависимости от внешних условий. Те, у кого низкий уровень этого гормона, подвержены частым приступам плохого настроения и депрессий, склонны к тревожности и пессимизму.



Британские ученые выяснили, что так называемая «длинная» вариация гена 5-HTTLPR способствует лучшей доставке серотонина в головной мозг, что заставляет человека чувствовать себя в два раза счастливее, чем остальные. Эти выводы основаны на опросе и изучении генетических особенностей нескольких тысяч добровольцев. При этом самые лучшие показатели довольства жизнью оказались у тех людей, оба родителя которых также обладают «геном счастья».

Если не считать опытов по гибридизации растений в XVIII в., первые работы по генетике в России были начаты в начале XX в. как на опытных сельскохозяйственных станциях, так и в среде университетских биологов, преимущественно тех, кто занимался экспериментальной ботаникой и зоологией. После революции и гражданской войны 1917-1922 гг. началось стремительное организационное развитие науки. Генетика человека на этапе ее становления обозначалась в нашей стране в духе времени – евгеникой. Обсуждение возможностей евгеники, совпавшее по времени со стартом и быстрым развитием генетических исследований в России, опиралось на традиции русской медицины и биологии. Это обстоятельство сделало русское евгеническое движение уникальным: его деятельность, направляемая Н.К. Кольцовым и Ю.А. Филипченко, строилась вокруг исследовательской программы Ф. Гальтона, целью которой было раскрытие фактов наследственности человека и относительной роли наследственности и среды в развитии различных признаков. Н.К. Кольцов, Ю.А. Филипченко и их последователи занимались обсуждением проблем генетики человека и медицинской генетики, включая популяционный аспект проблемы. Благодаря этим особенностям русского евгенического движения, в 30-х годах был создан прочный фундамент медицинской генетики.

К концу 1930-х годов в СССР была создана обширная сеть научно-исследовательских институтов и опытных станций (как в Академии наук СССР, так и во Всесоюзной академии сельскохозяйственных наук имени Ленина (ВАСХНИЛ)), а также вузовских кафедр генетики. Важным шагом к оформлению генетики как автономной области исследований явилось решение целого ряда просветительских задач и образования весной 1928 г. Общества по изучению расовой патологии и географического распределения болезней. Новое общество, обладая широким кругом интересов, представляло собой эскиз будущего Медико-генетического института. Его основал некоторое время спустя Соломон Григорьевич Левит (1894–1938). В 1930 г. кабинет был расширен до Генетического отделения при Медико-биологическом институте (МБИ). Левит стал директором института и переориентировал его на генетику человека. Медико-биологический институт с осени 1932 г. (после 8-месячного перерыва) снова "сосредоточился на разработке проблем биологии, патологии и психологии человека путем применения новейших достижений генетики и смежных дисциплин (цитологии, механики развития, эволюционного учения). Основные работы института пошли по трем руслам: клинико-генетическому, близнецовому и цитологическому.

Признанными лидерами направления были Н. И. Вавилов, Н. К. Кольцов, А С. Серебровский, С. С. Четвериков и др. В СССР издавали переводы трудов иностранных генетиков, в том числе Т. Моргана, Г. Мёллера, ряд генетиков участвовали в международных программах научного обмена. Американский генетик Г. Мёллер работал в СССР (1934-1937), советские генетики работали за границей. Н.В. Тимофеев-Ресовский - в Германии (с 1925 г.), Ф.Г. Добржанский - в США (с 1927г.).

Среди работ отечественных ученых, опубликованных в этот период, следует отметить монографию Левита "Проблема доминантности у человека". В ней был доказан факт резкой фенотипической вариабельности большинства патологических мутантных генов человека. Левит пришел к выводу, что патологические гены человека являются, в своем большинстве, условно доминантными и отличаются низким проявлением в гетерозиготе. Этот вывод Левита противоречил теории эволюции Фишера, согласно которой вновь возникающие мутантные гены рецессивны. Однако в свете работ школы С.С.Четверикова и С.Н.Давиденкова 20-х и 30-х гг. следует признать гипотезу Левита более адекватной. Сотрудники МБИ перевели на русский язык пионерскую книгу Фишера "Генетическая теория естественного отбора", включавшую изложение его теории эволюции доминантности, но изъяли из перевода евгенические главы. К этому переводу проявлял интерес автор; материалы книги широко обсуждались и серьезно комментировались.

Большое значение МБИ придавал обследованию одно- и двуяйцовых близнецов. В конце 1933 г. было охвачено 600 пар близнецов, весной 1934 – 700 пар, а весной 1937 г. было 1700 пар (по размаху работ Институт Левита был на первом месте в мире). Близнецы изучались врачами всех специальностей; детям оказывалась необходимая медицинская помощь; при МБИ работал детский сад (на 7 пар близнецов, 1933 г.); по предложению С.Г.Левита, в консерватории училось пять пар близнецов (с целью выяснения эффективных методов обучения). К 1933 г. применение близнецового метода дало результаты в выяснении роли наследственности и среды в физиологии и патологии ребенка, в изменчивости электрокардиограммы, некоторых психических признаков и т.д. Другой круг вопросов касался корреляций различных функций и признаков организма; третий был посвящен выяснению сравнительной эффективности различных способов обучения и целесообразности того или иного воздействия. Н.С.Четвериков и М.В.Игнатьев занимались разработкой вариационно-статистических методов для интерпретации получаемых данных. Была предпринята попытка точного количественного учета роли факторов наследственности и воздействия среды, как создающих внутрисемейную корреляцию, так и не создающих ее. Все это имело важные теоретические и практические последствия.

Среди конкретных работ МБИ было замечательное теоретическое исследование В.П. Эфроимсона 1932 г. Анализируя равновесие между накоплением мутаций и интенсивностью отбора, он рассчитал темп мутационного процесса у человека. Вскоре В.П.Эфроимсон был арестован по политическому обвинению, а в 1933 г. осужден ОГПУ по ст. 58-1 на три года ИТЛ. Через отца он передал из тюрьмы текст для зачтения на семинаре. Статья не была опубликована. Затем Холдейн независимо сделал аналогичную работу. С.Г. Левит и другие докладчики, каждый из которых внес оригинальный вклад в общее дело, определили предмет новой автономной области исследований. 15 мая 1934 г. новая наука получила легитимное наименование: "медицинская генетика".

В 1930-е гг. в рядах генетиков и селекционеров наметился раскол, связанный с энергичной деятельностью Т.Д. Лысенко. По инициативе генетиков был проведён ряд дискуссий (наиболее крупные - в 1936 и 1939 г.), направленных на борьбу с подходом Лысенко. На рубеже 1930-1940-х гг. ряд видных генетиков были арестованы, многие расстреляны или погибли в тюрьмах, в том числе, Н. И. Вавилов - выдающийся отечественный биолог и автор современной теории селекции; разработал учение о центрах происхождения культурных растений; сформулировавший закон гомологических рядов; разработавший учение о виде как системе.

В 1948 году на августовской сессии ВАСХНИЛТ. Д. Лысенко, пользуясь поддержкой И.В. Сталина, объявил генетику лженаукой. Лысенко воспользовался некомпетентностью партийного руководства в науке, "пообещав партии" быстрое создание новых высокопродуктивных сортов зерна ("ветвистая пшеница") и др. С этого момента начался период гонений на генетику, который получил название "лысенковщины" и продолжался вплоть до снятия Н.С. Хрущева с поста генерального секретаря ЦК КПСС в 1964 г. Лично Т.Д. Лысенко и его сторонники получили контроль над институтами отделения биологии АН СССР, ВАСХНИЛ и вузовскими кафедрами. Были изданы новые учебники для школ и вузов, написанные с позиций "Мичуринской биологии". Генетики вынуждены были оставить научную деятельность или радикально изменить профиль работы. Некоторым удалось продолжить исследования по генетике в рамках программ по изучению радиационной и химической опасности за пределами организаций, подконтрольных Т.Д. Лысенко и его сторонникам.

После открытия и расшифровки структуры ДНК, физической базы генов (1953 г.), с середины 1960-х г. началось восстановление генетики. Министр просвещения РСФСР В.Н. Столетов инициировал широкую дискуссию между лысенковцами и генетиками, в результате было опубликовано много новых работ по генетике. В 1963 г. вышел в свет университетский учебник М.Е. Лобашёва "Генетика", выдержавший впоследствии несколько изданий. Вскоре появился и новый школьный учебник "Общая биология" под редакцией Ю. И. Полянского, используемый, наряду с другими, и по сей день. В 1964 г., еще до снятия запрета на генетику, вышел в свет первый современный отечественный учебник Эфроимсона "Введение в медицинскую генетику". В 1969 г. был организован Институт медицинской генетики АМН СССР, ядро которого составили сотрудники отдела Н.В. Тимофеева-Ресовского и лабораторий Прокофьевой-Бельговской и Эфроимсона. Возник своего рода преемник Медико-генетического института. При организации нового ИМГ планировалось создание специального журнала, однако замысел не был осуществлен. Первый с 30-х годов журнал, посвященный изучению человека ("Человек"), был создан в 1990 г. при Институте человека АН СССР.

Таким образом, отечественные исследователи внесли значительный вклад в развитие такого раздела биологии как генетика. Этот вклад мог бы быть еще более весомым, если бы им были созданы столь же благоприятные условия для разработки собственных оригинальных идей, как и зарубежным генетикам Видимо в этим кроется одна из причин того, что современная российская генетика значительно отстала в своем развитии от западной науки.



В 2017 году cпециалисты по наследственности предоставили миру невероятные новые инструменты генетического редактирования и обнаружили уязвимые места бактерий и вирусов. Помимо этого, они сделали ряд фундаментальных открытий, которые приблизили нас к пониманию феномена жизни. Мы выбрали 10 главных открытий и достижений в области генетики за 2017 год.

1. Впервые отредактирован геном живого человека

Операцию провели в Калифорнии сотрудники компании Sangamo Therapeutics. Все прочие опыты, за исключением одного в Китае, о котором мало что известно, осуществлялись исключительно на образцах эмбриональной ткани.

Для 44-летнего пациента редактирование генома стало последним шансом. Брайан Маде страдает от синдрома Хантера, связанного с неспособностью печени производить важный фермент для расщепления мукополисахаридов. Фермент приходится вводить искусственно, что очень дорого, к тому же для борьбы с последствиями болезни Маде пришлось пройти через 26 операций. Чтобы помочь Брайану, ему внутривенно ввели миллиарды копий корректирующих генов, а также генетические инструменты, которые должны разрезать ДНК в определенных местах. Геном клеток печени должен измениться на всю оставшуюся жизнь. В случае успеха лечения исследователи продолжат эксперименты с другими наследственными заболеваниями.


2. Создан стабильный полусинтетический организм

В основе любой жизни на Земле лежат четыре буквы-нуклеиновых основания: аденин, тимин, цитозин и гуанин (A, T, C, G). Используя этот алфавит, можно создать любой живой организм, от бактерии до кита. Ученые давно пытаются «взломать» этот код, и в этом году им это, наконец, удалось. Прорыв совершили генетики из Исследовательского института Скриппс. Они дополнили генетический алфавит двумя новыми буквами — X и Y, которые вставили в ДНК кишечной палочки.

Вводить искусственные буквы в ДНК научились уже несколько лет назад, настоящим прорывом 2017 года стала стабильность искусственного организма. Раньше основания X и Y терялись при делениях, и потомки модифицированной бактерии быстро возвращались к «дикому» состоянию. Благодаря усовершенствованию технологий и изменениям, внесенным в основание Y, удалось добиться сохранения искусственных «букв» в геноме бактерий на протяжении 60 поколений. Применение новой технологии на практике пока остается делом будущего — возможно, ее можно будет применить для придания микроорганизмам новых свойств. Пока же для исследователей важнее тот факт, что им удалось модифицировать один из фундаментальных механизмов жизни.

3. Обнаружен «космический ген»

Мир переживает «космический Ренессанс»: компании во главе со SpaceX одна за другой рвутся в космос, а правительства планируют строить колонии на Марсе и Луне. Однако не стоит забывать, что миллионы лет наш вид и его предки эволюционировали для жизни на поверхности Земли. Важно заранее узнать, как долгое пребывание в космосе и на других планетах отразится на человеческом организме, чтобы предпринять необходимые меры защиты. К счастью, у исследователей появилась такая возможность — астронавт Скотт Келли, который провел на МКС около года, и его брат-близнец Марк, остававшийся на Земле, согласились на полное обследование своих организмов.

Помимо ожидаемых физиологических изменений, вызванных невесомостью, ученые с удивлением обнаружили различия в геномах братьев. У Скотта было зафиксировано временное удлинение теломер — концевых участков хромосом, а также изменения в экспрессии более 200 000 молекул РНК. Процесс включения и выключения тысяч генов преобразовался из-за пребывания в космосе. Ученые назвали совокупность этих изменений «космическим геном». Пока неизвестно, как он повлиял на здоровье Скотта — эксперименты с близнецами Келли продолжаются.

4. Доказана эффективность генетической терапии

В 2017 году CRISPR и другие технологии генетического редактирования все активнее применяли для борьбы с различными заболеваниями. В отличие от случая Брайана Маде, большинство подобных методик не требуют масштабных модификаций генома, а клетки редактируются не в организме пациента, а в лаборатории. Подобные способы получили название генетической терапии. В уходящем году исследователи неоднократно доказывали ее эффективность против различных болезней.

Самым ярким примером является борьба с опасным заболеванием, которое и само имеет генетическую природу. Речь идет о раке — точнее, пока только о некоторых его разновидностях. Исследователи продемонстрировали, что, взяв иммунные клетки больных лимфомой, с помощью генного редактирования настроив их на борьбу с опухолью и введя обратно пациенту, можно добиться высокого процента ремиссии. Метод, запатентованный под названием Kymriah™, в августе 2017 года был одобрен FDA.

5. Устойчивость к антибиотикам объяснена на молекулярном уровне

В 2017 году обеспокоенные ученые объявили, что настал конец эпохи антибиотиков. Средство, которое почти сто лет спасало миллионы человеческих жизней, быстро становится неэффективным из-за появления устойчивых к антибиотикам бактерий. Это происходит благодаря быстрому размножению микроорганизмов и их способности обмениваться генами. Одна бактерия, научившаяся сопротивляться воздействию лекарств, передаст это умение не только своим потомкам, но и любым находящимся поблизости представителям своего вида.

Однако пока одни пишут манифесты с призывами к правительствам и общественности, другие ищут у супербактерий уязвимые места. Поняв молекулярные основы устойчивости к лекарствам, мы сможем эффективно противостоять супербактериям. Датским ученым впервые удалось доказать, что гены устойчивости и гены антибиотиков родственны друг другу. Микроорганизмы рода Actinobacteria производят как антибиотики, так и вещества, способные их нейтрализовать. Болезнетворные бактерии способны «воровать» у актинобактерий гены, отвечающие за устойчивость, и распространять их по популяции. Хотя остановить горизонтальный перенос генов не под силу никому, обнаруженный механизм позволит найти новые средства борьбы с супербактериями.

6. Выявлены гены долгожительства

В отличие от различных болезней, которые можно научиться лечить, старение является по-настоящему экзистенциальной проблемой. Исследователи твердо намерены «отменить» его, но мы пока точно не знаем ни механизмов старения, ни последствий, которые его исчезновение произведет в обществе. Впрочем, специалисты настроены оптимистично. В 2017 году был проведен целый ряд исследований в области генетики старения, которые могут стать ключом к решению проблемы.

Одним из направлений стал поиск мутаций, связанных с долгожительством. Одна из них была обнаружена в общине амишей. Мутация отвечала за сниженный уровень ингибитора активатора плазминогена (PAI-1). Ее носители жили в среднем на 14 лет дольше, чем другие амиши (85 лет против 71 года). Также они реже болели возрастными заболеваниями, а их теломеры были длиннее. В других исследованиях было показано, что мутация рецептора гормона роста повышает продолжительность жизни у мужчин, а уровень интеллекта генетически связан с медленным старением. Также в прошедшем году китайские ученые обнаружили ген долгожительства у червей. На основе всех этих работ можно попытаться создать настоящее лекарство против старости. Возможно, одним из методов станет генетическая коррекция митохондрий — внутриклеточных батареек, которые с возрастом теряют гибкость.

7. Генетический скрининг стал еще точнее

Мы — это наши гены. По крайней мере, эта идея верна в отношении здоровья, ведь причиной многих болезней является генетическая предрасположенность к ним. Расшифровав свою ДНК, можно узнать о рисках тех или иных заболеваний и предпринять меры профилактики. В 2017 году технологии генетического скрининга совершенствовались и становились все более доступными благодаря ученым и представителям биотехнологических компаний. Например, теперь можно заранее предсказать риск развития сердечно-сосудистых заболеваний и даже склонность к прокрастинации.

Генетический скрининг важен не только для взрослых, но и для еще не родившихся детей и их родителей, и в этой сфере также есть движение вперед. Так, прошлогоднее исследование показало, что новая методика диагностики синдрома Дауна (и ряда других заболеваний) повысила точность предсказаний до 95%. Теперь потенциальные родители смогут решить судьбу плода, не опасаясь ошибки. Стартап Genomic Prediction идет еще дальше: он обещает с высокой точностью предсказывать рост, интеллект и здоровье будущего ребенка. Он использует новые технологии, благодаря которым стало возможным предугадывать не только заболевания и отклонения в развитии, вызванные единичной мутацией, но и состояния, формирующиеся путем взаимодействия множества генов. По сути, это уже евгеника, и к подобной практике возникает ряд этических вопросов.

8. Уточнены генетические механизмы эволюции

У основ теории эволюции стояли Чарльз Дарвин, открывший естественный отбор, и Грегор Мендель, впервые описавший механизмы наследственности. Ученые XX века смогли узнать, как эволюция работает на молекулярном уровне. Однако мы до сих пор далеки от полного понимания этого процесса, и каждый год приносит новые открытия. 2017 не стал исключением. Одной из главных работ о связи генетики и эволюции стало изучение рыб семейства цихлид, которое продемонстрировало, что наследственностью объясняются далеко не все признаки живых организмов. Например, в формировании костей черепа рыб огромную роль играет поведение.

Помимо этого, ученые сделали еще целый ряд замечательных фундаментальных открытий генетических основ эволюции. Им удалось понять, как бесполый червь выживал без секса 18 млн лет, уточнить роль случайности в эволюции и понять, что вирусы служат важнейшим источником новых генов.

9. На ДНК впервые записали музыку

ДНК — система хранения информации, которая успешно работала миллиарды лет. Она надежна и занимает совсем немного места. Поэтому идея использовать ее для записи информации кажется очевидной, ведь люди производят и собирают все больше данных, которые нужно где-то хранить. В 2016 году ученые из Microsoft перевели 200 Мб информации в молекулу ДНК размером с крупинку соли. В 2017 исследования в этой области продолжились.

Компания Twist Bioscience сумела впервые в истории записать на ДНК музыкальный файл. Для этого были выбраны две композиции: «Tutu» Майлза Дэвиса (живая запись с джазового фестиваля в Монтре 1986 года) и хит Deep Purple «Smoke on the Water». По словам исследователей, записи получились идеальными, и любой сможет послушать их, например, через триста лет — достаточно будет воспользоваться машиной, читающей ДНК. В отличие от современных носителей, записи с помощью нуклеиновых кислот не подвержены быстрому разрушению. К тому же этот способ хранения данных настолько компактен, что, согласно расчетам, вся информация из Интернета, закодированная в ДНК, уместится в большую обувную коробку.

10. Созданы генетический принтер и биологический телепорт

С помощью 3D-печати сегодня создают дома, металлические детали и даже органы. Генетик Джон Крейг Вентер решил не останавливаться на этом и построил «генетический принтер», который вместо чернил заполняется основаниями и может печатать ДНК живых организмов. Пока речь идет о наиболее примитивных созданиях, таких как вирусы, например, вирус гриппа, и бактерии, а также об отдельных участках геномов и РНК.

Биология - очень объемная наука, которая охватывает все стороны жизни каждого живого существа, начиная от строения его микроструктур внутри тела и заканчивая связью с внешней средой и космосом. Именно поэтому разделов у этой дисциплины очень много. Однако одним из самых молодых, но перспективных и имеющих сегодня особенно важное значение является генетика. Она зародилась позже остальных, но сумела стать самой актуальной, важной и объемной наукой, имеющей собственные цели, задачи и объект изучения. Рассмотрим, какова история развития генетики и что представляет собой эта ветвь биологии.

Генетика: предмет и объект изучения

Свое название наука получила только в 1906 году по предложению англичанина Бэтсона. Определение ей можно дать следующее: это дисциплина, изучающая механизмы наследственности, ее изменчивости у разных видов живых существ. Следовательно, основной целью генетики является выяснение строения структур, ответственных за передачу наследственных признаков, и исследование самой сути этого процесса.

Объектами изучения являются:

  • растения;
  • животные;
  • бактерии;
  • грибы;
  • человек.

Таким образом, она охватывает вниманием все царства живой природы, не забыв ни одного из представителей. Однако на сегодняшний день максимально поставлены на поток исследования именно одноклеточных простейших существ, все эксперименты по генетике проводятся на них, а также на бактериях.

Чтобы прийти к имеющимся теперь результатам, история развития генетики прошла длинный и тернистый путь. В разные периоды времени она подвергалась то интенсивному развитию, то полному забвению. Однако в итоге все же получила достойное место среди всей семьи биологических дисциплин.

История развития генетики кратко

Чтобы охарактеризовать основные вехи становления рассматриваемой ветви биологии, следует обратиться в не столь далекое прошлое. Ведь свое начало генетика берет из XIX века. А официальной датой ее зарождения как полностью обособленной дисциплины считается 1900 год.

Кстати, если говорить совсем уже об истоках, то следует заметить попытки селекции растений, скрещивания животных еще очень давно. Ведь этим занимались земледельцы и скотоводы еще в XV веке. Просто происходило это не с научной точки зрения.

Таблица "История развития генетики" поможет освоить ее главные исторические моменты становления.

Период развития Основные открытия Ученые
Начальный (вторая половина XIX века)

Гибридологические исследования в области растений (исследование поколений на примере вида гороха)

Грегори Мендель (1866 год)

Открытие процесса изучение полового размножения и его значения для закрепления и передачи признаков от родителей к потомству Страсбургер, Горожанкин, Гертвиг, Ван-Беневин, Флемминг, Чистяков, Вальдейр и другие (1878-1883 гг.)
Средний (начало-середина XX века) Это период максимально интенсивного роста развития генетических исследований, если рассматривать историческую эпоху в целом. Ряд открытий в области клетки, его значения и механизмов работы, расшифровка строения ДНК, разработка и скрещивания, закладывание всех теоретических основ генетики приходится именно на этот период времени Множество отечественных ученых и генетиков со всего мира: Томас Морган, Навашин, Серебряков, Вавилов, де Фриз, Корренс, Уотсон и Крик, Шлейден, Шванн и многие другие
Современный период (вторая половина XX века и до сегодняшнего дня) Этот период характеризуется рядом открытий в области микроструктур живых существ: детальное изучение строения молекул ДНК, РНК, белка, ферментов, гормонов и прочее. Выяснение глубинных механизмов кодирования признаков и передача их по наследству, генетический код и его расшифровка, механизмы трансляции, транскрипции, репликации и так далее. Огромное значение имеют дочерние генетические науки, которых именно в этот период сформировалось немало В. Эльвинг, Ноден и другие

В приведенной выше таблице история развития генетики кратко отображена. Далее рассмотрим более подробно главные открытия разных периодов.

Основные открытия XIX века

Главными трудами этого периода стали работы трех ученых из разных стран:

  • в Голландии Г. де Фриз - изучение особенностей наследования признаков у гибридов разных поколений;
  • в Германии К. Корренс - сделал то же самое на примере кукурузы;
  • в Австрии К. Чермак - повторил опыты Менделя на посевном горохе.

Все эти открытия базировались на написанных 35 годами ранее работах Грегори Менделя, который проводил многолетние исследования и все результаты фиксировал в научных трудах. Однако эти данные не вызвали интереса у его современников.

В этот же период история развития генетики включает в себя ряд открытий по изучению половых клеток человека и животных. Доказано, что некоторые признаки, которые передаются по наследству, закрепляются без изменений. Другие же являются индивидуальными для каждого организма и выступают результатом приспособления к условиям окружающей среды. Работы проводились Страсбургером, Чистяковым, Флеммингом и многими другими.

Развитие науки в XX веке

Так как официальной датой рождения считается то неудивительно, что именно в XX веке вершилась история развития генетики. исследования, созданный к этому времени, позволяет медленно, но верно получать потрясающие результаты.

Создание новейших достижений техники дает возможность заглянуть в микроструктуры - это еще более продвигает генетику вперед в развитии. Так, были установлены:

  • структуры ДНК и РНК;
  • механизмы их синтеза и репликации;
  • молекула белка;
  • особенности наследования и закрепления;
  • локализация отдельных признаков в хромосомах;
  • мутации и их проявления;
  • появился доступ к управлению генетическим аппаратом клетки.

Наверное, одним из самых важных в этот период открытий стала расшифровка ДНК. Это было сделано Уотсоном и Криком в 1953 году. В 1941-м было доказано, что признаки кодируются в белковых молекулах. С 1944 по 1970 г. сделаны максимальные открытия в области строения, репликации и значения ДНК и РНК.

Современная генетика

История развития генетики как науки на современном этапе проявляется в интенсификации разных ее направлений. Ведь сегодня существуют:

  • молекулярная генетика;
  • медицинская;
  • популяционная;
  • радиационная и прочие.

Вторую половину XX и начало XXI века для рассматриваемой дисциплины принято считать геномной эрой. Ведь современные ученые вмешиваются уже непосредственно в весь генетический аппарат организма, учатся изменять его в нужную сторону, управлять происходящими там процессами, снижать патологические проявления, купировать их в корне.

История развития генетики в России

В нашей стране рассматриваемая наука начала свое интенсивное становление лишь во второй половине XX века. Все дело в том, что долгое время наблюдался период застоя. Это времена правления Сталина и Хрущева. Именно в эту историческую эпоху случился раскол в ученых кругах. Т. Д. Лысенко, имевший власть, заявил о том, что все исследования в области генетики недействительны. А сама она не является наукой вообще. Заручившись поддержкой Сталина, он всех известных генетиков того времени отправил на смерть. Среди них:

  • Вавилов;
  • Серебровский;
  • Кольцов;
  • Четвериков и другие.

Многие вынуждены были подстраиваться под требования Лысенко, чтобы избежать смерти и продолжать исследования. Некоторые эмигрировали в США и другие страны.

Только после ухода с поста Хрущева генетика в России получила свободу в развитии и интенсивный рост.

Отечественные ученые-генетики

Самыми значительными открытиями, которыми может гордиться рассматриваемая наука, стали и те, что осуществились нашими соотечественниками. История развития генетики именно в России связана с такими именами, как:

  • Николай Иванович Вавилов (учение об иммунитете растений, и прочее);
  • Николай Константинович Кольцов (химический мутагенез);
  • Н. В. Тимофеев-Ресовский (основоположник радиационной генетики);
  • В. В. Сахаров (природа мутаций);
  • М. Е. Лобашев (автор методических пособий по генетике);
  • А. С. Серебровский;
  • К. А. Тимирязев;
  • Н. П. Дубинин и многие другие.

Этот список можно продолжать еще долго, ведь во все времена русские умы были великими во всех отраслях и научных областях знаний.

Направления в науке: медицинская генетика

История развития медицинской генетики берет свое начало гораздо раньше, чем общая наука. Ведь еще в XV-XVIII веках были доказаны явления передачи по наследству таких заболеваний, как:

  • полидактилия;
  • гемофилия;
  • прогрессирующая хорея;
  • эпилепсия и прочие.

Была установлена отрицательная роль инцеста в сохранении здоровья и нормального развития потомства. Сегодня этот раздел генетики является очень важной областью медицины. Ведь именно он позволяет контролировать проявления и купировать многие генетические мутации еще на стадии эмбрионального развития плода.

Генетика человека

История развития берет свое начало намного позже общей генетики. Ведь заглянуть внутрь хромосомного аппарата людей стало возможным лишь при использовании самых современных технических устройств и методов исследования.

Человек стал объектом генетики в первую очередь с точки зрения медицины. Однако основные механизмы наследования и передачи признаков, закрепления и проявления их у потомства для людей ничем не отличаются от таковых у животных. Поэтому не обязательно объектом исследования использовать именно человека.

Эти открытия в генетике навсегда изменят наше с вами будущее! Уже сегодня мы можем предупреждать развитие многих опасных заболеваний, предсказывать риски наследования тяжелых болезней, диагностировать синдром Дауна у еще не родившихся детей, вычислять проблемы с сердцем, останавливать смертельные инфекции.

1. Ген интеллекта

Его удалось открыть американским ученым, которые обратили внимание на странную способность гена KL-VS повышать IQ человека до 9 пунктов. Естественно, эти данные еще не до конца изучены, но медики надеются применить открытие по отношению к детям с задержками в развитии. Активация этого гена не сделает из них гениев, но хотя бы повысит заданный природой потенциал, что уже неплохо.

2. Ген глупости

В противоположность вышесказанному ученые из Техасского университета нашли объективное объяснение низкому IQ, которое может провоцировать генетическое отклонение с кодом RGS14. Именно этот ген обнаружили у лабораторных крыс, а когда его нейтрализовали, гиппокамп стал работать в разы активнее, что помогло маленьким испытуемым быстрее адаптироваться к внешней среде и лучше запоминать схемы лабиринтов. Так ученые пришли к выводу, что существуют гены, которые мешают нам накапливать знания, но их устранение поможет усилить интеллектуальные способности.

3. Ген старости

Тема здоровья и долгожительства волновала умы людей тысячелетиями, и только в 2017 случился прорыв – удалось обнаружить гены старения. Подопытными стали люди из общины амишей, представители которой редко болели и в среднем жили на 15 лет дольше обычных показателей. С их разрешения ученые получили информацию по ДНК и нашли зацепку в мутациях гормона роста и интеллекта. Оказалось, данные показатели напрямую привязаны к здоровью, а значит, как следует с ними разобравшись, можно будет замедлить старение.

4. Ген счастья

Если вы думаете, что ваше настроение зависит только от скачки гормонов, жизненных достижений или погоды за окном – вы ошибаетесь. Исследователи Лондонской школы здоровья обнаружили ген 5-HTTLPR, который способен ускорять доставку серотонина к мозгу, тем самым заставляя человека чувствовать себя счастливее. Самое интересное, что именно «ген счастья» (как его прозвали ученые) делил людей на позитивистов и негативистов: те, у кого он был активен, чаще высказывались о том, что довольны своей жизнью; те, у кого он был пассивен, в тестах проявляли повышенную тревожность и давали больше пессимистических оценок. Кто знает, может, это открытие в генетике поможет эффективнее лечить депрессию?

5. Польза вирусов

А что если вирусы являются не только угрозой, но и источником новых генов для всех живых видов? К такому открытию ученые пришли год назад, обнаружив, что именно вирусам под силу полностью изменять структуру ДНК, привнося в нее совершенно нетипичные сочетания генов и тем самым способствуя эволюции. Кто знает, возможно, человек стал тем, кем он есть сейчас, благодаря влиянию одноклеточных, роль которых слишком долго недооценивали? Не просто же так наши ДНК имеют так много совпадений… Это открытие планируют изучить подробнее, чтобы раскрыть все возможности подобного поворота.

6. Ген лишнего веса

Наблюдая за поведением лабораторных мышей, ученые задались вопросом: почему подопытных кормят одинаково, а весят они все по-разному? Эту особенность удалось объяснить, открыв ген IRX3. Оказалось, у мышей, не склонных к набору веса, этот ген был поврежден, в отличие от их более упитанных собратьев. Последнее дало повод говорить о том, что можно вылечить ожирение революционным способом – заставить IRX3 в ДНК человека мутировать. Тогда организм перестанет реагировать на высококалорийную пищу набором веса, и проблема с диабетом решится сама собой.


Иллюстрация: Washingtonpost.com

7. Лечение Альцгеймера

Еще одно исследование провели японские ученые, открыв ген klc1, способный в два раза увеличивать бета-амилоидный белок в тканях мозга, который провоцирует развитие старческого маразма. Есть предположение, что его заблокировать, опасный белок перестанет отравлять мозг, и это способствует излечению больных Альцгеймером. Эксперименты пока ведутся, а мы надеемся, что они будут удачными.

8. Создание ДНК-телепорта

Недавно Джон Вентер доказал, что печатать живые молекулы вирусов и бактерий вполне реально, создав первый в мире 3D-принтер от мира генетики. Что нас ждет дальше? Ученые уже ведут разговоры о том, чтобы колонизировать с помощью этого аппарата другие планеты. Например, отправить ДНК-принтер на Марс и с помощью радиосигналов напечатать на планете необходимые штаммы бактерий, которые преобразуют окружающую среду, сделав ее пригодной для проживания человека. Если вы думаете, что такой сценарий утопичен, то как вам такая новость: этим проектом уже заинтересовался Илон Маск, который давно доказал – в этом мире нет ничего невозможного!

А какие открытия в генетике вас удивили больше всего? Участвуйте в голосовании!

© 2024 Новогодний портал. Елки. Вязание. Поздравления. Сценарии. Игрушки. Подарки. Шары